Tìm GTLN của hàm số y= x2\(\sqrt{1-x}\) trên (0;1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(c,\text{PT có 2 }n_0\text{ phân biệt }\Leftrightarrow\Delta'=2^2-2m>0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)
Tập xác định R.
Ta có bảng biến thiên:
Hàm số không có GTLN trên R . Chọn đáp án C.
\(y=\dfrac{6\sqrt{2}.x.\dfrac{1}{6\sqrt{2}}+\dfrac{2\sqrt{2}}{3}.\dfrac{3\sqrt{2}}{4}\sqrt{1+9x^2}}{8x^2+1}\)
\(y\le\dfrac{3\sqrt{2}\left(\dfrac{1}{72}+x^2\right)+\dfrac{\sqrt{2}}{3}\left(\dfrac{9}{8}+9x^2+1\right)}{8x^2+1}=\dfrac{\sqrt{2}\left(6x^2+\dfrac{3}{4}\right)}{8x^2+1}\)
\(y\le\dfrac{\dfrac{3\sqrt{2}}{4}\left(8x^2+1\right)}{8x^2+1}=\dfrac{3\sqrt{2}}{4}\)
* Hàm số đã cho liên tục trên R vì với nên (1) đúng
* Tại điểm x = 0 hàm số không có đạo hàm nên (2) sai.
* y = x 2 - 2 | x | + 2 = | x | 2 - 2 | x | + 2 = ( | x | - 1 ) 2 + 1 ≥ 1 ∀ x
Suy ra, GTNN của hàm số là 1 khi |x| = 1 ⇔ x = ±1
nên hàm số không có GTLN.
* Phương trình x 2 - 2 | x | + 2 = 0 vô nghiệm nên đồ thị không cắt trục hoành.
f ( - x ) = ( - x ) 2 - 2 | - x | + 2 = x 2 - 2 | x | + 2 = f ( x )
Nên hàm số đã cho là hàm số chẵn.
Mệnh đề 1, 5 đúng. Mệnh đề 2, 3,4,6 sai.
Chọn B
24.
\(cos\left(x-\dfrac{\pi}{2}\right)\le1\Rightarrow y\le3.1+1=4\)
\(y_{max}=4\)
26.
\(y=\sqrt{2}cos\left(2x-\dfrac{\pi}{4}\right)\)
Do \(cos\left(2x-\dfrac{\pi}{4}\right)\le1\Rightarrow y\le\sqrt{2}\)
\(y_{max}=\sqrt{2}\)
b.
\(\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=\dfrac{1}{2}\)
\(\Leftrightarrow cos\left(x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{6}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{6}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k2\pi\\x=-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)