Rút gọn \(P=\frac{2019}{\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{5}-2\sqrt{3}}{\sqrt{5}+\sqrt{3}}-\frac{2\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}\)Rút gọn
=\(\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)
=\(\frac{5-\sqrt{15}-2\sqrt{15}+6-10-2\sqrt{15}-\sqrt{15}-3}{5-3}\)
\(=\frac{-2-6\sqrt{15}}{2}=\frac{-2\left(1+3\sqrt{15}\right)}{3}=-1-3\sqrt{15}\)
\(A=\frac{3+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{6-2\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{5+2\sqrt{5}+1}}+\frac{6-2\sqrt{5}}{2+\sqrt{5-2\sqrt{5}+1}}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{\left(\sqrt{5}+1\right)^2}}+\frac{6-2\sqrt{5}}{2+\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\frac{6+2\sqrt{5}}{2+\left|\sqrt{5}+1\right|}+\frac{6-2\sqrt{5}}{2-\left|\sqrt{5}-1\right|}\)
\(=\frac{6+2\sqrt{5}}{2+\sqrt{5}+1}+\frac{6-2\sqrt{5}}{2-\sqrt{5}+1}\)( vì \(\sqrt{5}+1>0;\sqrt{5}-1>0\))
\(=\frac{6+2\sqrt{5}}{3+\sqrt{5}}+\frac{6-2\sqrt{5}}{3-\sqrt{5}}\)
\(=2+2\)
\(=4\)
Vậy A = 4
Tích cho mk nhoa !!!! ~~
\(\forall k\ge0\)ta có :
\(\frac{1}{\sqrt{k}+\sqrt{k+1}}=\frac{\sqrt{k+1}-\sqrt{k}}{\left(\sqrt{k}+\sqrt{k+1}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}=\frac{\sqrt{k+1}-\sqrt{k}}{k+1-k}=\sqrt{k+1}-\sqrt{k}\)
Bạn áp dụng công thức này vào dãy trên ta sẽ có các số hạng triệt tiêu đi nhau và ra kết quả
bạn đặt A=biểu thức rồi tính \(\frac{1}{\sqrt{2}}A\) là ra
\(M=\frac{2+\sqrt{5}}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{2-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{6+2\sqrt{5}}}+\frac{2-\sqrt{5}}{2-\sqrt{6-2\sqrt{5}}}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{2+\sqrt{5}+1}+\frac{2-\sqrt{5}}{2-\sqrt{5}-1}\)
\(M.\frac{1}{\sqrt{2}}=\frac{2+\sqrt{5}}{3+\sqrt{5}}+\frac{2-\sqrt{5}}{1-\sqrt{5}}\)
P/s làm tiếp nha , hình như bạn ghi đề sai dấu
Ta xử lí mẫu trước, đặt \(a=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
\(\Leftrightarrow a^3=\left(\sqrt[3]{2+\sqrt{5}}\right)^3+\left(\sqrt[3]{2-\sqrt{5}}\right)^3+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
\(\Leftrightarrow a^3=4-3a\)
\(\Leftrightarrow a^3+3a-4=0\)
\(\Leftrightarrow\left(a-1\right)\left(a^2+a+4\right)=0\)
\(\Rightarrow a=1\)
Vậy \(P=\frac{2019}{a}=2019\)