Viết Gỉa thiết kết luận cho bài trường hợp bằng nhau thứ ba của tam giác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu cho tam giác ABC
Sẽ có 3 trường hợp :(chỉ là vd thôi nhé)
1.c-c-c <=> AB = A’B’
AC = A’C’
BC = B’C’
2 c-g-c<=> AB=A’B’
Góc A = góc A’
BC = B’C’
3 g-c-g<=>Góc A =góc A’
AC=A’C’
Góc B=góc B’
Bài 1:
I. Trường hợp bằng nhau thứ nhất của tam giác cạnh – cạnh – cạnh:
1) Vẽ tam giác biết độ dài 3 cạnh: (HS tự nêu các bước vẽ)
VD: Vẽ rABC biết AB = 3cm, BC = 5cm, AC = 4cm.
2) Trường hợp bằng nhau cạnh – cạnh – cạnh:
“Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.”
II. Trường hợp bằng nhau thứ nhất của tam giác cạnh – góc – cạnh:
1) Vẽ tam giác biết độ dài 2 cạnh và 1 góc xen giữa:
(HS tự nêu các bước vẽ)
VD: Vẽ rABC biết AB = BC = 4cm,
2) Trường hợp bằng nhau cạnh – góc – cạnh:
“Nếu hai cạnh và góc xen giữa của tam giác này bằng hai cạnh và góc xen giữa của tam giác kia thì hai tam giác đó bằng nhau.”
* Lưu ý: Cặp góc bằng nhau phải xen giữa hai cặp cạnh bằng nhau thì mới kết luận được hai tam giác bằng nhau.
III. Trường hợp bằng nhau thứ nhất của tam giác góc – cạnh – góc:
1) Vẽ tam giác biết độ dài 1 cạnh và 2 góc kề:
(HS tự nêu các bước vẽ)
VD: Vẽ rABC biết AC = 5cm,
2) Trường hợp bằng nhau góc – cạnh – góc:
“Nếu một cạnh và hai góc kề của tam giác này bằng một cạnh và hai góc kề của tam giác kia thì hai tam giác đó bằng nhau.”
* Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau.
* Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề ấy cạnh của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (g-c-g)
* Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (ch-gn)
C-C-C
C-G-C
G-C-G
*Giả thiết kết luận trường hợp thư 2: C-g-C
Gt | ΔABC; ΔDEF; AB=DE; BC=EF; góc B=góc E |
Kl | ΔABC=ΔDEF |
mới đầu mk cũng như bn, nhưng giờ bit r
bn cứ hiu 2 tg = nhau thi cái quái j nó cx = nhau
nhưng ng ta chỉ cần có 3 yếu tố là đủ để nó = nhau
Huỳnh Ngọc Gia Linh k cần sắp xếp, ví dụ bạn thấy nó 2 cạnh =, 1 góc = thì là c.g.c
Để tìm độ dài DA và DE, ta cần làm theo các bước sau:
1. Vẽ tam giác ABC, biết rằng góc A bằng 90 độ.
2. Trên cạnh BC, lấy điểm E sao cho BE = BA.
3. Vẽ tia phân giác của góc B, cắt AC tại điểm D.
4. Để tính độ dài DA và DE, ta có thể sử dụng định lí phép đổi vị trí.
Định lí phép đổi vị trí nói rằng trong tam giác vuông, nếu ta hoán đổi vị trí của các cạnh góc vuông và cạnh đối diện, thì độ dài 2 cạnh vuông góc với nhau sẽ không thay đổi.
Vì vậy, ta có: BD = BA (vì BD là cạnh đối diện góc vuông A),
và AD = AC (vì AD là cạnh vuông góc với BD).
5. Tiếp theo, để tính số đo góc BED, ta có thể sử dụng quy tắc cộng góc trong tam giác.
Ta biết rằng góc BED được tạo bởi tia BD và tia DE. Vì vậy, ta có:
BED = BDE + EDB.
Vì góc A là góc vuông, nên góc BAC + góc ABC + góc BCA = 180 độ (quy tắc tổng góc trong tam giác).
Vì góc ABC là góc vuông, nên góc BCA = 180 - góc BAC.
Vì vậy, góc EDB = góc ABC - góc BCA = 90 - (180 - góc BAC) = góc BAC - 90.
Do đó, góc BED = BDE + EDB = góc BAC + (góc BAC - 90) = 2góc BAC - 90.
Tóm lại, ta đã tìm được độ dài DA và DE là DA = AC và DE = BC, cũng như tính được số đo góc BED là 2góc BAC - 90.