K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2015

2xyz=x+y+z+9

=>2=1/yz+1/xz+1/xy+9/xyz

 nếu x>=y>=z>=1

=>2=< (1/z^2)+(1/z^2)+(1/z^2)+(1/z^2)=(1/z^2)4

=>z^2=<24

=>z=1 ;2 ;3 ;4

rồi thay vào tìm tiếp x ;y

15 tháng 1 2018

 xyz = 9 + x + y + z 
<=> 1 = 1/yz + 1/xz + 1/xy + 9/xyz 
giả sử: x ≥ y ≥ z ≥ 1, ta có: 
1 = 1/yz + 1/xz + 1/xy + 9/xyz ≤ 1/z^2 + 1/z^2 + 1/z^2 + 9/z^2 = 12/z^2 
=> z^2 ≤ 12 => z = 1, 2 , 3 
*z = 1: 
1=1/y + 1/x + 1/xy ≤ 1/y + 1/y + 1/y = 3/y 
=> y ≤ 3 => y = 1,2,3 
y =1 => x= 11 + x (vô nghiệm) 
y = 2 => 2x = 12 + x => x = 12 trường hợp nầy nghiệm (12,2,1) 
y = 3 => 3x = 13 + x ( không có ngiệm x nguyên) 

* z = 2 
1 = 1/2y + 1/2x + 1/xy + 1/2xy = 1/2y + 1/2x + 3/2xy ≤ 1/2(1/y + 1/y + 3/y) = .5/2y 
=> y ≤ 5/2 => y = 2 
=> 4x = 13 + x (không có nghiệm x nguyên) 

* z =3: 
1 = 1/3y + 1/3x + 1/xy + 3/xy = 1/3y + 1/3x + 4/xy ≤ 1/3(1/y +1/y + 12/y) = 14/3y 
=> y ≤ 14/3 => y = 3, 4 
y = 3 => 9x = 15 + x (không có nghiệm x nguyên) 
y = 4 => 12x = 16 + x (không có nghiệm x nguyên) 

Vậy pt có nghiệm là (12,2,1) và các hoán vị của nó.

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

Lời giải:

$2xyz=x+y+z$

$2=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}$

Không mất tổng quát giả sử $x\geq y\geq z$ 

$\Rightarrow xy\geq xz\geq yz$

$\Rightarrow \frac{1}{xy}\leq \frac{1}{xz}\leq \frac{1}{yz}$

$\Rightarrow 2\leq \frac{3}{yz}$$

$\Rightarrow yz\leq \frac{3}{2}$. Mà $yz$ nguyên dương nên $yz=1$

$\Rightarrow y=z=1$. Thay vào pt ban đầu:

$2x=x+2$

$x=2$

Vậy $(x,y,z)=(2,1,1)$ và hoán vị.

5 tháng 4 2015

xy+yz+xz=2xyz

<=>(xy+yz+xz)/(xyz)=2xyz/(xyz)

<=>1/z+1/x+1/y=2                                   (1)

Giả sử x<hoặc=y<hoặc=z

=>1/x>hoặc bằng 1/y>hoặc bằng 1/z

=>1/x+1/x+1/x>hoặc=2

=>3/x>=2

Mà x thuộc N*

=>x=<1

=>x=1

Thay vào (1),ta được:

1/z+1+1/y=2

=>1/y+1/z=1                                  (2)

=>1/y+1/y>=1

=>2/y>=1

=>y=<2

=>y=2 hoặc y=1

+ y=1

Thay vào (2)

1/1+1/z=1

=>1/z=0 (loại)

+ y=2

Thay vào (2)

1/2+1/z=1

=>z=2 (thỏa mãn)

Vậy (x;y;z)=(1;2;2)và các hoán vị của chúng

5 tháng 4 2015

Mach Duy Hung: em cam on ak!

8 tháng 8 2016

\(x^2+y^2+z^2=2xyz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+z^2=0\)

\(\Leftrightarrow\left(x-y\right)^2+x^2=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-y=0\\z=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=y\\z=0\end{array}\right.\)

8 tháng 8 2016

2xyz chứ có phải 2xy đâu :)

9 tháng 7 2016

pt <=> yz 2x - 3 =3 - 2x - 2z

=> 2x - 3 chia hết cho z

=> 2x - 3= k.z , k thuộc Z

pt <=> y. k = -k -2 (vì z=0 Không thỏa mãn)

2 chia hết cho k => k= 1 ; -1 ; 2 ; -2

* k = 1 => y=-3 , z = 1 ; x=2

* k= -1 => y=1; z = 1; x=1

* k=2 => y = -2 ; z = 1 , x =5/2(loại)

* k = -2 => y= 0 ; z = 0 ; x= 3/2 (loại)

Chắc là bài này là dạng toán Phương trình. Có j sai sót mong bạn thông cảm.