K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2017

22 tháng 6 2018

Thêm đấu ngoặc vô đi 

22 tháng 6 2018

với x;y>=0 ta có:

\(A^2=\left(\sqrt{2x+1}+\sqrt{2y+1}\right)^2=2x+1+2y+1+2\sqrt{\left(2x+1\right)\left(2y+1\right)}\)

\(=2\left(x+y\right)+2+\sqrt{4xy+2x+2y+1}=2\left(x+y\right)+2+\sqrt{4xy+2\left(x+y\right)+1}\)

\(2=2\left(x^2+y^2\right)=\left(1+1\right)\left(x^2+y^2\right)>=\left(x+y\right)^2\Rightarrow x+y< =\sqrt{2}\)(bđt bunhiacopxki)

\(2xy< =x^2+y^2=1\Rightarrow2\cdot2xy=4xy< =2\cdot1=2\)

\(\Rightarrow A^2=2\left(x+y\right)+2+2\sqrt{4xy+2\left(x+y\right)+1}< =2\sqrt{2}+2+2\sqrt{2+2\sqrt{2}+1}\)

\(=2\sqrt{2}+2+2\sqrt{\left(\sqrt{2}+1\right)^2}=2\sqrt{2}+2+2\left(\sqrt{2}+1\right)4\sqrt{2}+4\)

\(\Rightarrow A< =\sqrt{4\sqrt{2}+4}\)

dấu = xảy ra khi x=y=\(\sqrt{\frac{1}{2}}\)

vậy max A là \(\sqrt{4\sqrt{2}+4}\)khi \(x=y=\sqrt{\frac{1}{2}}\)

31 tháng 1 2020

Bạn tham khảo nhé!

Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath

12 tháng 11 2021

B

12 tháng 11 2021

b

 

10 tháng 8 2019

13 tháng 8 2019

Đáp án: D

18 tháng 8 2018

Ta có

J   =   x 2   –   8 x   +   y 2   +   2 y +   5     =   x 2   –   2 . x . 4   +   16   +   y 2   +   2 . y . 1   +   1   –   12     =   ( x   –   2 ) 2   +   ( y   +   1 ) 2   –   12

Vì ( x   –   2 ) 2   ≥   0 ;   ( y   +   1 ) 2   ≥   0 ; Ɐx; y nên ( x   –   2 ) 2   +   ( y   +   1 ) 2 – 12 ≥ -12

Dấu “=” xảy ra khi  ó  x - 2 =0 và y + 1 = 0 hay x = 2 và y = - 1

Vậy giá trị nhỏ nhất của J là -12 khi x = 2; y = -1

Đáp án cần chọn là: A