Với m>0. Chứng minh: \(\frac{2m}{m^2+5}\) không là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk làm như thê snayf mà ko bít đúng ko? các bn cho ý kiến nha!
TA có:
a < b => a + a < a + b < b + b
Hay 2.a <a+b<2b
Vậy: a/m < a+b/2m < b/m
Đặt \(A=\frac{2m}{m^2+5}\Rightarrow A>0\)
Mặt khác \(A-1=\frac{2m}{m^2+5}-1=\frac{-\left(m^2-2m+1\right)-4}{m^2+5}=\frac{-\left(m-1\right)^2-4}{m^2+5}< 0\) \(\forall m\)
\(\Rightarrow A< 1\Rightarrow0< A< 1\)
A nằm giữa 2 số nguyên liên tiếp nên A ko phải số nguyên
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
Ta có : a/a+b > a/a+b+c (a,b,c > 0)
b/b+c > b/b+c+a
c/c+a > c/c+a+b
=> M > 1 (1)
Mặt khác : a/a+c < 1 => a/a+b < a+c/a+b+c (a,b,c > 0)
b/b+c < b+a/b+c+a
c/c+a < c+b/c+a+b
=> M < 2 (2)
Từ (1) và (2) = > 1 < M < 2
=> M ko phải là số nguyên. (đpcm)
Ai k mk mk k lại cho!!
Đặt \(A=\frac{2m}{m^2+5}\Rightarrow A>0\)
Mặt khác \(A-1=\frac{2m}{m^2+5}-1=\frac{-\left(m^2-2m+1\right)-4}{m^2+5}=\frac{-\left(m-1\right)^2-4}{m^2+5}< 0\forall m\)
\(\Rightarrow A< 1\Rightarrow0< A< 1\)
A nawmgf giữa 2 số nguyên liên tiếp nên A không phải số nguyên