K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Ta có \(x-y=4\)   =>  \(\left(x-y\right)^2=4^2\)

                                  => \(x^2-2xy+y^2=16\)

                                 => \(x^2-2xy+y^2+4xy=16+4xy\)

                                => \(x^2+2xy+y^2=16+4.3\)

                                 => \(\left(x+y\right)^2=28\)

5 tháng 2 2017

Ta có : x^4+y^4

=(x^2)^2 + (y^2)^2

=(x^2)^2+2x^2y^2+(y^2)^2-2x^2y^2

=(x^2+y^2)^2-2.(xy)^2

=[(-3)^2]^2-2.(-28)^2

=81-2.784

=81-1568

=-1487

NV
16 tháng 8 2021

Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được

Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý

a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)

b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)

23 tháng 10 2021

\(x+y=5\Rightarrow\left(x+y\right)^2=25\)

\(\Rightarrow x^2+2xy+y^2=25\)

\(\Rightarrow x^2+y^2=25-2xy=25-2.4=17\)

\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=5.\left(17-4\right)=65\)

a) \(x^2+y^2=\left(x+y\right)^2-2xy\Rightarrow8=\left(x+y\right)^2-2.4\Rightarrow\orbr{\begin{cases}x+y=4\\x+y=-4\end{cases}.}\)

=>\(\left(x+y\right)^3=\orbr{\begin{cases}4^3=64\\\left(-4\right)^3=-64\end{cases}}.\)

8 tháng 9 2016

Còn mình thì sẽ giải câu b (câu a bạn giải rất chính xác):

\(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow\)\(\left(x-y\right)^2=16-2.8=0\)

                                                  \(\Rightarrow\) \(x-y=0\)

                                                  \(\Rightarrow\left(x-y\right)^3=0^3=0\)

12 tháng 7 2016

1./ \(x+y=3\Rightarrow\left(x+y\right)^3=27\Rightarrow x^3+y^3+3xy\left(x+y\right)=27\Rightarrow x^3+y^3+3\cdot2\cdot3=27.\)

\(\Rightarrow x^3+y^3=9\)

2./ \(\left(x+3\right)\left(x^2-3x+3^2\right)-x^3-2x-4=0\)

\(\Leftrightarrow x^3+27-x^3-2x-4=0\Leftrightarrow2x=23\Leftrightarrow x=\frac{23}{2}\)

12 tháng 7 2016

1/ \(x+y=3\)

\(\Rightarrow\left(x+y\right)^2=9\)

\(\Rightarrow x^2+2xy+y^2=9\)

\(\Rightarrow x^2+4+y^2=9\)

\(\Rightarrow x^2+y^2=5\)

\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.1=3\)

NV
9 tháng 5 2021

\(P=\dfrac{x^3}{y^2}+\dfrac{y^3}{x^2}+2020=\dfrac{x^5+y^5}{\left(xy\right)^2}+2020=\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)-\left(xy\right)^2\left(x+y\right)}{\left(-2\right)^2}\)

\(=\dfrac{\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]\left[\left(x+y\right)^2-2xy\right]-\left(-2\right)^2.5}{4}\)

\(=\dfrac{\left(-8+6.5\right)\left(25+4\right)-20}{4}=...\)

27 tháng 9 2021

Ta có: \(x-y=4\Rightarrow\left(x-y\right)^2=16\)

\(\Rightarrow x^2-2xy+y^2=16\Rightarrow x^2+y^2=16+2xy=16+2.3=22\)

\(M=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=4.\left(22+3\right)=100\)

27 tháng 9 2021

Cảm ơn bạn

27 tháng 8 2018

= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012

= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012

= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012

= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012

= 1013 - 3.1012 + 3.101 + 2012

= 1002013