Cho 2 số a,b thỏa mãn điều kiện a^3+b^3+3(a^2+b^2)+4(a+b)+4=0.Tính M =2018(a+b)^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
U
0
AK
31 tháng 12 2018
Nhóm vào , ta có :
\(\left(a+1\right)^3+\left(b+1\right)^3+a+b+1+1=0\)
Đến đây áp dụng HĐT là ra
TT
15 tháng 2 2020
+) Ta có : \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow2\left(ab+bc+ca\right)=-2016\)
\(\Rightarrow\left(ab+bc+ca\right)^2=\left(-2013\right)^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=2013^2\)
\(\Rightarrow a^2b^2+b^2c^2+c^2a^2=2013^2\)( Do \(a+b+c=0\) )
+) Lại có : \(a^2+b^2+c^2=2016\)
\(\Rightarrow\left(a^2+b^2+c^2\right)^2=2016^2\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2016^2\)
\(\Rightarrow a^4+b^4+c^4=2016^2-2.2013^2=-4040082\)
Hay : \(A=-4040082\)
Vậy \(A=-4040082\) với a,b,c thỏa mãn đề.
Ta có : \(a^3+b^3+3\left(a^2+b^2\right)+4\left(a+b\right)+4=0\)
\(=>\left(a+1\right)^3+\left(b+1\right)^3+a+b+2=0\)
\(=>\left(a+b+2\right)\left[\left(a+1\right)^2-\left(a+1\right)\left(b+1\right)+\left(b+1\right)^2\right]+\left(a+b+2\right)=0\)
\(=>\left(a+b+2\right)\left(a^2+b^2+a+b-ab+2\right)=0\)
\(=>\left(a+b+2\right)2\left(a^2+b^2+a+b-ab+2\right)=0\)
\(=>\left(a+b+2\right)\left(2a^2+2b^2+2a+2b-2ab+4\right)=0\)
\(=>\left(a+b+2\right)\left[\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\right]=0\)
Lại có : \(\left(a-b\right)^2\ge0;\left(a+1\right)^2\ge0;\left(b+1\right)^2\ge0\)
\(=>\left(a-b\right)^2+\left(a+1\right)^2+\left(b+1\right)^2+2\ge0\)
\(=>a+b+2=0=>a+b=-2=>M=2018.\left(-2\right)^2=8072\)