Cho a, b, c là các số thực dương thỏa mãn a+b+c=5.
Tìm GTNN của biểu thức: \(Q=\frac{a}{ab+5c}+\frac{b}{bc+5a}+\frac{c}{ca+5b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với dự đoán P đạt Min tại \(a=b=c=\frac{5}{3}\Rightarrow P=\frac{9}{20}\). Nên ta chứng minh \(P\ge\frac{9}{20}\).Thật vậy:\(P=\Sigma\frac{a}{ab+5c}=\Sigma\frac{a}{\left(a+c\right)\left(b+c\right)}=\frac{a\left(a+b\right)+b\left(b+c\right)+c\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a+b+c\right)^2-\left(ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a+b+c\right)^2-\frac{\left(a+b+c\right)^2}{3}}{\left[\frac{\left(a+b\right)+\left(b+c\right)+\left(c+a\right)}{3}\right]^3}=\frac{9}{20}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{5}{3}\)
Vậy..
Ta có:
sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)
Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)
có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)
Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)) \(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)
\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)
MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)
\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)
Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)
Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3
Ta đi chứng minh: \(\frac{5b^3-a^3}{ab+3b^3}\le2b-a\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
Một cách tương tự:\(\frac{5c^3-b^3}{bc+3c^3}\le2c-b;\frac{5a^3-c^3}{ca+3a^2}\le2a-c\)
Cộng lại thì:
\(LHS\le a+b+c=3\)
Đẳng thức xảy ra tại a=b=c=1
mk làm r` đây nhé Câu hỏi của Lê Chí Cường - Toán lớp 9 - Học toán với OnlineMath
Lời giải:
Vì $abc=1$ nên:
\((a+bc)(b+ac)(c+ab)=a(a+bc)b(b+ac)c(c+ab)=(a^2+1)(b^2+1)(c^2+1)\)
Áp dụng BĐT Bunhiacopxky:
\((a^2+1)(1+b^2)\geq (a+b)^2; (a^2+1)(1+c^2)\geq (a+c)^2; (b^2+1)(1+c^2)\geq (b+c)^2\)
Nhân theo vế và thu gọn:
\(\Rightarrow (a^2+1)(b^2+1)(c^2+1)\geq (a+b)(b+c)(c+a)\)
Lại có: Theo BĐT AM-GM thì:
\((a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc\)
\(\geq (ab+bc+ac)(a+b+c)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8(a+b+c)(ab+bc+ac)}{9}(*)\) (đây là BĐT khá quen thuộc rồi)
Do đó:
\(P=\frac{(a+bc)(b+ca)(c+ab)}{ab+bc+ac}+\frac{1}{a+b+c}=\frac{(a^2+1)(b^2+1)(c^2+1)}{ab+bc+ac}+\frac{1}{a+b+c}\geq \frac{(a+b)(b+c)(c+a)}{ab+bc+ac}+\frac{1}{a+b+c}\)
\(P\geq \frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\)
Áp dụng BĐT (*) và AM-GM:
\(\frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}\geq 7.\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(ab+bc+ac)}=\frac{7}{9}(a+b+c)\geq \frac{7}{9}.3\sqrt[3]{abc}=\frac{7}{3}\)
\(\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\geq 2\sqrt{\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)(a+b+c)}}\geq 2\sqrt{\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(a+b+c)(ab+bc+ac)}}=\frac{2}{3}\)
\(\Rightarrow P\geq \frac{7}{3}+\frac{2}{3}=3\)
Vậy $P_{\min}=3$
\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\)
\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1\)
\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1+1-1\)
Áp dụng BĐT AM-GM ta có:
\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\ge a^2+b^2+c^2+2ab+2bc+2ac-1=\left(a+b+c\right)^2-1\)\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\)
Dấu " = " xảy ra <=> ...
Ta có: \(\frac{1}{3}.\left(a+b+c\right)^2\ge ab+bc+ca\)( BĐT quen thuộc tự c/m)
\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\ge\frac{\left(a+b+c\right)^2}{\frac{1}{3}\left(a+b+c\right)^2}-\frac{1}{\frac{1}{3}\left(a+b+c\right)}+\frac{1}{a+b+c}\)\(=3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\)
Ta có: \(abc=1\Leftrightarrow\sqrt[3]{abc}=1\le\frac{a+b+c}{3}\left(AM-GM\right)\)
\(\Rightarrow a+b+c\ge3\)
Dấu " = " xảy ra <=> ...
\(\Rightarrow P\ge3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\ge3\)
Dấu " = " xảy ra <=> a=b=c=1
KL:...........
Ta có BĐT phụ \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
\(\Leftrightarrow-\frac{\left(a-b\right)^2\left(a+b\right)}{b\left(a+3b\right)}\le0\) *luôn đúng*
Tương tự cho 2 BĐT còn lại cũng có:
\(P\le2a-b+2b-c+2c-a=a+b+c=3\)
Dấu '=" khi \(a=b=c=1\)
Xét \(\frac{5b^3-a^3}{ab+3b^2}-\left(2b-a\right)=\frac{5a^3-a^3-\left(ab+3b^2\right)\left(2b-a\right)}{ab+3b^2}\)
\(=\frac{5b^3-a^3-\left(2ab^2-a^2b+6b^3-3b^2a\right)}{ab+3b^2}=\frac{-b^5-a^3+a^2b+b^2a}{ab+3b^2}\)
\(=\frac{-\left(a+b\right)\left(a-b\right)^2}{ab+3b^3}\le0\)
\(\Rightarrow\frac{5b^3-a^3}{ab+3b^2}\le2b-a\)
Ta có 2 BĐT tương tự \(\hept{\begin{cases}\frac{5c^3-b^3}{bc+3c^2}\le2c-b\\\frac{5a^3-c^3}{ca+3a^2}\le2a-c\end{cases}}\)
Cộng 3 vế BĐT trên ta được \(P\le2\left(a+b+c\right)-\left(a+b+c\right)=a+b+c=3\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}a=b=c\\a+b+c=3\end{cases}\Leftrightarrow a=b=c=1}\)
4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)
\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)
\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)
Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)
Đẳng thức xảy ra khi ...(anh giải nốt ạ)
@Cool Kid:
Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)
Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)
1. Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)
Áp dụng Cauchy ta được:
\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)
\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)
\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)
\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)
\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)
\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)
\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)
\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)
\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)
Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)
Lời giải:
Do $a+b+c=5$ nên:
$Q=\frac{a}{ab+c(a+b+c)}+\frac{b}{bc+a(a+b+c)}+\frac{c}{ca+b(a+b+c)}=\frac{a}{(c+b)(c+a)}+\frac{b}{(a+b)(a+c)}+\frac{c}{(b+c)(b+a)}$
$=\frac{a(a+b)+b(b+c)+c(c+a)}{(a+b)(b+c)(c+a)}$
Theo BĐT AM-GM:
$(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3=\left(\frac{2(a+b+c)}{3}\right)^3=\frac{1000}{27}$
Và:
$a(a+b)+b(b+c)+c(c+a)=(a+b+c)^2-(ab+bc+ac)\geq (a+b+c)^2-\frac{(a+b+c)^2}{3}=\frac{50}{3}$
Do đó:
$Q\geq \frac{\frac{50}{3}}{\frac{1000}{27}}=\frac{9}{20}$
Vậy $Q_{\min}=\frac{9}{20}$. Dấu "=" xảy ra khi $a=b=c=\frac{5}{3}$
Lời giải:
Do $a+b+c=5$ nên:
$Q=\frac{a}{ab+c(a+b+c)}+\frac{b}{bc+a(a+b+c)}+\frac{c}{ca+b(a+b+c)}=\frac{a}{(c+b)(c+a)}+\frac{b}{(a+b)(a+c)}+\frac{c}{(b+c)(b+a)}$
$=\frac{a(a+b)+b(b+c)+c(c+a)}{(a+b)(b+c)(c+a)}$
Theo BĐT AM-GM:
$(a+b)(b+c)(c+a)\leq \left(\frac{a+b+b+c+c+a}{3}\right)^3=\left(\frac{2(a+b+c)}{3}\right)^3=\frac{1000}{27}$
Và:
$a(a+b)+b(b+c)+c(c+a)=(a+b+c)^2-(ab+bc+ac)\geq (a+b+c)^2-\frac{(a+b+c)^2}{3}=\frac{50}{3}$
Do đó:
$Q\geq \frac{\frac{50}{3}}{\frac{1000}{27}}=\frac{9}{20}$
Vậy $Q_{\min}=\frac{9}{20}$. Dấu "=" xảy ra khi $a=b=c=\frac{5}{3}$