K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2021

Ta có:

\(\widehat{A}=\widehat{C}=50^o\)

\(\widehat{B}=\widehat{C}=130^o\)

15 tháng 10 2021

nhanh lên

20 tháng 12 2022

Câu 10:

góc A=180-130=50 độ

góc B=(180+50)/2=230/2=115 độ

góc C=180-115=65 độ

20 tháng 12 2022

có ai biết làm bài 11 ko a

9 tháng 1 2018

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Trong tính chất của hình bình hành:

Định lí: Trong hình bình hành:

+ Các cạnh đối bằng nhau.

+ Các góc đối bằng nhau.

+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường

a) Ta thấy : BAD = BCD = 120°( tính chất) 

Mà AB//CD ( ABCD là hình bình hành) 

=> ABC + BCD = 180° 

=> ABC = ADC = 60°

15 tháng 11 2021

Vì ABCD là hbh nên \(\widehat{A}=\widehat{C}=120^0\) và AB//CD

Do đó \(\widehat{B}=\widehat{D}=180^0-\widehat{A}=60^0\) (trong cùng phía)

 

30 tháng 10 2021

\(\widehat{A}=\widehat{C}=135^0\)

\(\widehat{B}=\widehat{D}=45^0\)

13 tháng 1 2017

mình dốt hình lắm chỉ biết số học thôi

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Vì \(ABCD.A'B'C'D'\) là hình lăng trụ nên có:

‒ Hai đáy \(ABCD\) và \(A'B'C'D'\) bằng nhau và là hình bình hành.

‒ Các mặt bên \(AA'B'B,AA'D'D,BB'C'C,CC'D'D\) là các hình bình hành.

b) Ta có:

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {AA'C'C} \right) \cap \left( {ABC{\rm{D}}} \right) = AC\\\left( {AA'C'C} \right) \cap \left( {A'B'C'D'} \right) = A'C'\end{array} \right\} \Rightarrow AC\parallel A'C'\)

Mà \(AA'\) và \(CC'\) là các cạnh bên của hình lăng trụ nên \(AA'\parallel CC'\)

Vậy \(AA'C'C\) là hình bình hành.

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {BB'D'D} \right) \cap \left( {ABC{\rm{D}}} \right) = B{\rm{D}}\\\left( {BB'D'D} \right) \cap \left( {A'B'C'D'} \right) = B'D'\end{array} \right\} \Rightarrow B{\rm{D}}\parallel B'D'\)

Mà \(BB'\) và \(DD'\) là các cạnh bên của hình lăng trụ nên \(BB'\parallel DD'\)

Vậy \(BB'D'D\) là hình bình hành.

c) Ta có:

\(\left. \begin{array}{l}\left( {ABC{\rm{D}}} \right)\parallel \left( {A'B'C'D'} \right)\\\left( {A'B'C{\rm{D}}} \right) \cap \left( {ABC{\rm{D}}} \right) = C{\rm{D}}\\\left( {A'B'C{\rm{D}}} \right) \cap \left( {A'B'C'D'} \right) = A'B'\end{array} \right\} \Rightarrow C{\rm{D}}\parallel A'B'\left( 1 \right)\)

\(ABC{\rm{D}}\) là hình bình hành nên \(AB = CD\)

\(AA'B'B\) là hình bình hành nên \(AB = A'B'\)

Vậy \(A'B' = CD\left( 2 \right)\)

Từ (1) và (2) suy ra \(A'B'C{\rm{D}}\) là hình bình hành

\( \Rightarrow A'C,B'D\) cắt nhau tại trung điểm của mỗi đường.

Chứng minh tương tự ta có:

+ \(ABC'D'\) là hình bình hành nên \(AC',B{\rm{D}}'\) cắt nhau tại trung điểm của mỗi đường

+ \(A'BCD'\) là hình bình hành nên \(A'C,B{\rm{D}}'\) cắt nhau tại trung điểm của mỗi đường

Do đó bốn đoạn thẳng \(A'C,AC',B'D,BD\) có cùng trung điểm.

17 tháng 6 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vì ∠ (BAD) +  ∠ (BAE) +  ∠ (EAF) +  ∠ (FAD) = 360 0

⇒  ∠ (EAF) =  360 0  – ((BAD) + (BAE) + (FAD) )

Mà  ∠ (BAD) = α 2  (gt)

(BAE) =  60 0  (ΔBAE đều)

∠ (FAD) =  60 0  (ΔFAD đều)

Nên  ∠ (EAF) =  360 0  – ( α 2  +  60 0  +  60 0 ) =  240 0  –  α

a: Xét ΔMEA và ΔMCB có

góc EMA=góc CMB

MA=MB

góc MEA=góc MCB

=>ΔMEA=ΔMCB

=>ME=MC

=>M là trung điểm của CE

Xét tứ giác AEBC có

M là trung điểm chung của AB và EC

=>AEBC là hbh

b: Để AEBC là hình chữ nhật thì góc EAC=90 độ

=>góc DAC=90 độ

=>góc ACD+góc D=90 độ

mà góc ACD=1/2*góc D

nên góc D=2/3*90=60 độ

=>góc B=60 độ

góc BAD=góc BCD=180-60=120 độ