Cho n là số tự nhiên thỏa mãn:\(2^n-1\)là số nguyên tố.
CMR:n là số nguyên tố
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Ta thấy nếu p, q cùng lẻ thì r chẵn. Mà r là số nguyên tố nên r = 2 (vô lí).
Do đó p = 2 hoặc q = 2 (Do p, q là các số nguyên tố).
Không mất tính tổng quát, giả sử p = 2.
Giả sử n lớn hơn 1.
Ta có \(r^2=2^n+q^n=\left(2+q\right).A\) với \(A=2^{n-1}+2^{n-2}q+...+q^{n-1}\).
Rõ ràng A lớn hơn 1. Do đó 2 + q = r. Dễ thấy q lẻ.
Suy ra \(\left(2+q\right)^2=2^n+q^n\).
Với n = 2 ta có 4q = 0, vô lí.
Với n > 2 ta có bất đẳng thức \(2^n+q^n\ge2^3+q^3\ge\dfrac{\left(2+q\right)^3}{4}>\left(2+q\right)^2\) (vô lí).
Do đó giả sử trên là sai.
Vậy n = 1.
câu trả lời của mình là =3 vì:
- 23=4-1=3 là số nguyên tố thỏa mẵn yêu cầu