Bài 1 :
Tìm tất cả cac số nguyên n để \(2n^2+n-7\) chia hết cho \(n-2\)
Bài 2 : Tìm các hằng số a và b sao cho đa thức f(x) chia hết cho đa thức g(x)
a) \(f\left(x\right)=\left(x^4+ax^2+b\right)\) ; \(g\left(x\right)=\left(x^2-x+1\right)\)
b) \(f\left(x\right)=ax^3+bx^2+5x-50\) ; \(g\left(x\right)=x^2+3x+3\)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Để \(2n^2+n-7⋮n-2\) thì \(5⋮n-2\)
Làm nốt