Với m>0. Chứng minh: \(\frac{2m}{m^2+5}\) không là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{2m}{m^2+5}\Rightarrow A>0\)
Mặt khác \(A-1=\frac{2m}{m^2+5}-1=\frac{-\left(m^2-2m+1\right)-4}{m^2+5}=\frac{-\left(m-1\right)^2-4}{m^2+5}< 0\forall m\)
\(\Rightarrow A< 1\Rightarrow0< A< 1\)
A nawmgf giữa 2 số nguyên liên tiếp nên A không phải số nguyên
Mk làm như thê snayf mà ko bít đúng ko? các bn cho ý kiến nha!
TA có:
a < b => a + a < a + b < b + b
Hay 2.a <a+b<2b
Vậy: a/m < a+b/2m < b/m
a/ Áp dụng Bất đẳng thức Cauchy cho các số m2,n2,1 không âm ta được:
m2+1>=2m(1)
n2+1>=2n (2)
Từ (1) và (2)=> m2+n2+2>= 2m+2n vs mọi m,n (đpcm)
b/ Ta có: (a-b)2>= 0
<=> a2 +b2-2ab>=0
<=>a2+b2+2ab>=4ab (cộng 2 vế vs 2ab với a>0,b>0)
<=> (a+b)2>= 4ab
<=> a+b >= 4ab/(a+b) (chia 2 vế cho a+b với a>0.b>0)
<=> (a+b)/ab>= 4/(a+b) (3)
Mà: 1/a+1/b=(a+b)/ab (4)
Từ (3) và (4)=> 1/a+1/b>=4/(a+b)
<=> (a+b)(1/a+1/b)>=4 (đpcm)
Ta có : a/a+b > a/a+b+c (a,b,c > 0)
b/b+c > b/b+c+a
c/c+a > c/c+a+b
=> M > 1 (1)
Mặt khác : a/a+c < 1 => a/a+b < a+c/a+b+c (a,b,c > 0)
b/b+c < b+a/b+c+a
c/c+a < c+b/c+a+b
=> M < 2 (2)
Từ (1) và (2) = > 1 < M < 2
=> M ko phải là số nguyên. (đpcm)
Ai k mk mk k lại cho!!
Đặt \(A=\frac{2m}{m^2+5}\Rightarrow A>0\)
Mặt khác \(A-1=\frac{2m}{m^2+5}-1=\frac{-\left(m^2-2m+1\right)-4}{m^2+5}=\frac{-\left(m-1\right)^2-4}{m^2+5}< 0\) \(\forall m\)
\(\Rightarrow A< 1\Rightarrow0< A< 1\)
A nằm giữa 2 số nguyên liên tiếp nên A ko phải số nguyên