K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

EP // MF (EP là đường trung bình trong ∆BAF) và EP = AF / 2 = MF => MENF là hình bình hành. 
=> MP và EF cắt nhau tại trung điểm I. 
FN // DE và FN = DE / 2 = QE => FQEN là hình bình hành => QN và EF cắt nhau tại trung điểm I 
=> MP và QN cắt nhau tại trung điểm của chúng => MNPQ là hình bình hành 

25 tháng 8 2016

b làm sai đề bài rồi kìa

 

27 tháng 9 2018
16 tháng 10 2023

Sửa đề: Chứng minh AK=KI=IC

a: Xét tứ giác BEDF có

DE//BF

DE=BF\(\left(DE=\dfrac{1}{2}AD;BF=\dfrac{1}{2}BC;AD=BC\right)\)

Do đó: BEDF là hình bình hành

b: BEDF là hình bình hành

=>BE//DF

Xét ΔAID có

E là trung điểm của AD

EK//ID

Do đó: K là trung điểm của AI

=>AK=KI

Xét ΔBKC có

F là trung điểm của CB

FI//BK

Do đó: I là trung điểm của KC

=>KI=IC

=>AK=KI=IC