K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Xét 

\(\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow\left(1-b-a+ab\right)\left(1-c\right)\ge0\)

\(\Leftrightarrow1-\left(a+b+c\right)+ab+bc+ca-abc\ge0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc\le1\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1\)

Dấu "=" xảy ra tại \(a=b=0;c=1\) và các hoán vị.

28 tháng 11 2019

o lờ mờ dấu "=" xảy ra khi a=b=0;c=1 và các hoán vị hoặc a=b=1;c=0 và các hoán vị 

\(A=a\left(1-b\right)+b\left(1-c\right)+c\left(1-a\right)\ge0\)

Dấu "=" xảy ra khi a=b=c=0 hoặc a=b=c=1 

15 tháng 3 2021

Đặt a + b + c = t \(\left(3\ge t\ge\sqrt{3}\right)\).

Ta có \(P=\dfrac{t^2-3}{2}+3t=\dfrac{t^2+6t-3}{2}=\dfrac{\left(t-\sqrt{3}\right)\left(t+6+\sqrt{3}\right)+6\sqrt{3}}{2}\ge3\sqrt{3}\).

Đẳng thức xảy ra khi a = 0, b = \(\sqrt{3}\), c = 0.

NV
12 tháng 11 2021

Em tham khảo ở đây:

xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24

12 tháng 11 2021

vậy không có tìm GTLN hay sao ạ?

27 tháng 5 2018

a+b+c=abc à

28 tháng 5 2018

uk bạn ơi

AH
Akai Haruma
Giáo viên
11 tháng 5 2019

Lời giải:
Vì $abc=1$ nên:

\((a+bc)(b+ac)(c+ab)=a(a+bc)b(b+ac)c(c+ab)=(a^2+1)(b^2+1)(c^2+1)\)

Áp dụng BĐT Bunhiacopxky:

\((a^2+1)(1+b^2)\geq (a+b)^2; (a^2+1)(1+c^2)\geq (a+c)^2; (b^2+1)(1+c^2)\geq (b+c)^2\)

Nhân theo vế và thu gọn:

\(\Rightarrow (a^2+1)(b^2+1)(c^2+1)\geq (a+b)(b+c)(c+a)\)

Lại có: Theo BĐT AM-GM thì:

\((a+b)(b+c)(c+a)=(ab+bc+ac)(a+b+c)-abc\)

\(\geq (ab+bc+ac)(a+b+c)-\frac{(a+b+c)(ab+bc+ac)}{9}=\frac{8(a+b+c)(ab+bc+ac)}{9}(*)\) (đây là BĐT khá quen thuộc rồi)

Do đó:

\(P=\frac{(a+bc)(b+ca)(c+ab)}{ab+bc+ac}+\frac{1}{a+b+c}=\frac{(a^2+1)(b^2+1)(c^2+1)}{ab+bc+ac}+\frac{1}{a+b+c}\geq \frac{(a+b)(b+c)(c+a)}{ab+bc+ac}+\frac{1}{a+b+c}\)

\(P\geq \frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\)

Áp dụng BĐT (*) và AM-GM:

\(\frac{7(a+b)(b+c)(c+a)}{8(ab+bc+ac)}\geq 7.\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(ab+bc+ac)}=\frac{7}{9}(a+b+c)\geq \frac{7}{9}.3\sqrt[3]{abc}=\frac{7}{3}\)

\(\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)}+\frac{1}{a+b+c}\geq 2\sqrt{\frac{(a+b)(b+c)(c+a)}{8(ab+bc+ac)(a+b+c)}}\geq 2\sqrt{\frac{\frac{8}{9}(a+b+c)(ab+bc+ac)}{8(a+b+c)(ab+bc+ac)}}=\frac{2}{3}\)

\(\Rightarrow P\geq \frac{7}{3}+\frac{2}{3}=3\)

Vậy $P_{\min}=3$

12 tháng 5 2019

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1\)

\(=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2+1+1+1-1\)

Áp dụng BĐT AM-GM ta có:

\(\left(a+bc\right)\left(b+ca\right)\left(c+ab\right)\ge a^2+b^2+c^2+2ab+2bc+2ac-1=\left(a+b+c\right)^2-1\)\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\)

Dấu " = " xảy ra <=> ...

Ta có: \(\frac{1}{3}.\left(a+b+c\right)^2\ge ab+bc+ca\)( BĐT quen thuộc tự c/m)

\(\Rightarrow P\ge\frac{\left(a+b+c\right)^2-1}{ab+bc+ca}+\frac{1}{a+b+c}\ge\frac{\left(a+b+c\right)^2}{\frac{1}{3}\left(a+b+c\right)^2}-\frac{1}{\frac{1}{3}\left(a+b+c\right)}+\frac{1}{a+b+c}\)\(=3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\)

Ta có: \(abc=1\Leftrightarrow\sqrt[3]{abc}=1\le\frac{a+b+c}{3}\left(AM-GM\right)\)

\(\Rightarrow a+b+c\ge3\)

Dấu " = " xảy ra <=> ...

\(\Rightarrow P\ge3+\frac{a+b+c-3}{\left(a+b+c\right)^2}\ge3\)

Dấu " = " xảy ra <=> a=b=c=1

KL:...........

21 tháng 1 2020

Đầu tiên tiền điều kiện để phương trình bậc 2 có 2 nghiệm thuộc [0; 1] trước đi sẽ có điều kiện của a,b,c lúc đó thì giải bất như bài bất bình thường.

NV
5 tháng 3 2021

Đặt \(\left(a+1;b+1;c+1\right)=\left(x;y;z\right)\Rightarrow1\le x\le y\le z\le2\)

\(B=\left(x+y+z\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{y}+\dfrac{z}{x}+\dfrac{x}{z}+3\) (1)

Do \(x\le y\le z\Rightarrow\left(z-y\right)\left(y-x\right)\ge0\)

\(\Leftrightarrow xy+yz\ge y^2+zx\)

\(\Leftrightarrow\dfrac{x}{z}+1\ge\dfrac{y}{z}+\dfrac{x}{y}\)

Tương tự: \(1+\dfrac{z}{x}\ge\dfrac{y}{x}+\dfrac{z}{y}\)

Cộng vế: \(2+\dfrac{x}{z}+\dfrac{z}{x}\ge\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{y}+\dfrac{y}{x}\) (2)

Từ (1); (2) \(\Rightarrow B\le2\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+5\)

Đặt \(\dfrac{z}{x}=t\Rightarrow1\le t\le2\)

\(\Rightarrow B\le2\left(t+\dfrac{1}{t}\right)+5=\dfrac{2t^2+2}{t}+5=\dfrac{2t^2+2}{t}-5+10\)

\(\Rightarrow B\le\dfrac{2t^2-5t+2}{t}+10=\dfrac{\left(t-2\right)\left(2t-1\right)}{t}+10\le10\)

\(B_{max}=10\) khi \(t=2\) hay \(\left(a;b;c\right)=\left(0;0;1\right);\left(0;1;1\right)\)