K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 1

Lời giải:

** Sửa lại hàm số: $y=-x+3$

a. Bạn có thể tự vẽ.

b. Để $y=(2k-1)x+1$ song song với (d)$ thì:

$2k-1=-1$

$\Leftrightarrow k=0$

c. PT hoành độ giao điểm của $(d)$ và $y=(k-3)x+5$:

$-x+3=(k-3)x+5$

$\Leftrightarrow (k-2)x=-2$

$\Leftrightarrow x=\frac{-2}{k-2}$ (đk: $k\neq 2$)

Khi đó: $y=-x+3=\frac{2}{k-2}+3$

Hai đths cắt nhau tại điểm có tung độ $7$

$\Leftrightarrow \frac{2}{k-2}+3=7$

$\Leftrightarrow \frac{2}{k-2}=4$

$\Leftrightarrow k-2=\frac{1}{2}\Leftrightarrow k=2,5$

a: Sửa đề: y=-x+3

Vẽ đồ thị

loading...

 

b: Để đường thẳng y=(2k-1)x+1 song song với (d) thì 

\(\left\{{}\begin{matrix}2k-1=-1\\1\ne3\left(đúng\right)\end{matrix}\right.\)

=>2k-1=-1

=>2k=0

=>k=0

c: Thay y=7 vào y=-x+3, ta được:

-x+3=7

=>-x=4

=>x=-2

Thay x=-2 và y=7 vào y=(k-3)x+5, ta được:

-2(k-3)+5=7

=>-2(k-3)=2

=>k-3=-1

=>k=2

4 tháng 11 2015

a, b=k=0

b,(2k-1).3+k=0 => 3k=3 => k =1

c, 2k-1 = 3/5=> 2k = 8/5 => k = 4/5 khác 4 vậy k = 4/5

d, (2k-1)(-3) +k =2 => -5k =-1 => k =1/5

a: Thay k=-3 vào pt, ta được:

\(x^2-2\cdot\left(-3+2\right)x+\left(-3\right)^2+2\cdot\left(-3\right)-7=0\)

\(\Leftrightarrow x^2+2x-4=0\)

\(\Leftrightarrow\left(x+1\right)^2=5\)

hay \(x\in\left\{\sqrt{5}-1;-\sqrt{5}-1\right\}\)

b: \(\text{Δ}=\left(2k+4\right)^2-4\left(k^2+2k-7\right)\)

\(=4k^2+16k+16-4k^2-8k+28\)

=8k+44

Để phương trình có hai nghiệm thì 8k+44>=0

=>8k>=-44

hay k>=-11/2

Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=28\)

\(\Leftrightarrow\left(2k+4\right)^2-3\cdot\left(k^2+2k-7\right)=28\)

\(\Leftrightarrow4k^2+16k+16-3k^2-6k+21=28\)

\(\Leftrightarrow k^2+10k+37-28=0\)

\(\Leftrightarrow\left(k+1\right)\left(k+9\right)=0\)

=>k=-1

30 tháng 9 2015

o---o

6 tháng 2 2022

Xét pt :

\(x^2-2\left(k+2\right)x+k^2+2k-7=0\)

\(\Delta'=\left(k+2\right)^2-\left(k^2+2k-7\right)\)

\(=k^2+4k+4-k^2-2k+7\)

\(=2k+11\)

Để phương trình có 2 nghiệm pb \(\Leftrightarrow k>-\dfrac{11}{2}\)

Theo định lí Viet ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(k+2\right)\\x_1.x_2=k^2+2k-7\end{matrix}\right.\)

Ta có :

\(x_1^2+x_2^2=x_1.x_2+28\)

\(\Leftrightarrow\left(x_1+x_2\right)^2=3x_1.x_2+28\)

\(\Leftrightarrow4\left(k+2\right)^2=3\left(k^2+2k-7\right)+28\)

Tự giải hết pt tìm k nhé :> Buồn ngủ quá ~

1 tháng 1 2016

tik mik nha mik tik lại

câu hỏi này mik chưa học đến vì mik mới học lớp 6 thui

tham khảo chtt nha bạn

chứ câu này mk chưa có học

 

4 tháng 8 2017