K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2019

Giả sử (n+4)(n+7) ko chia hết cho 2

Ta có: (n+4)(n+7) = 2k+1 (là số lẻ)

Giả sử ta có n là lẻ

Ta có (n+4) là số lẻ, (n+7) là số chắn 

Mà ta có (n+4)(n+7) là số lẻ

=> Vô lí

Vậy ta có (n+4)(n+7) là số chắn (đpcm)

#HOKTOT#

25 tháng 11 2019

Nếu sai thì mình xin lỗi nha :L

11 tháng 1 2017

Theo bài ra , ta có 3 trg hợp n : 

TH1 : n chia hết cho 3 .

Nếu n chia hết cho 3 thì tích trên đã đc chia hết cho 3 .

TH2 : n chia 3 dư 1 

Nếu n chia 3 dư 1 thì (n + 2 ) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .

TH3 : n chia 3 dư 2 

Nếu n chia 3 dư 2 thì (n+7) sẽ chia hết cho 3 => tích n(n+2)(n+7) chia hết cho 3 , vì nếu trong tích có một thừa số chia hết cho 3 thì cả tích sẽ chia hết cho 3 .

Vậy : Với mọi trg hợp n thì tích n(n+2)(n+7) đều chia hết cho 3 .

11 tháng 1 2017

ta có: n(n+2)(n+7) \(⋮\)3.

đặt A = n(n+2)(n+7)

 vì n là số tự nhiên. khi chia n cho 3 ta có 3 dạng:n=3k; n=3k+1; n=3k+2 ( k\(\in\)  N )                         

nếu n=3k => n \(⋮\)

=> A \(⋮\)3. (1)

nếu n=3k+1 => n+2=3k+1+2

                            =3k+3 \(⋮\)3

=> A \(⋮\)(2)

nếu n=3k+2 => n+7=3k+2+7

                            =3k+9 \(⋮\)3

=> A \(⋮\)(3)

từ (1);(2) và (3) => A \(⋮\)3 với mọi n .

vậy  n(n+2)(n+7) \(⋮\)3.với mọi n .

chcs năm mới vui vẻ, k nha...

21 tháng 2 2017

Đặt  A=n(n+2)(n+7) 

TH1: n=3k => A hiển nhiên chia hết cho 3

TH2: Nếu n=3k+1 => A=(3k+1)(3k+1+2)(3k+1+7)=(3k+1).3(k+1)(3k+8)  chia hết cho 3

TH3: Nếu k=3k+2 => A=(3k+2)(3k+2+2)(3k+2+7)=(3k+2)(3k+4).3(k+3) chia hết cho 3

Vậy A chia hết cho 3 với mọi n thuộc Z

30 tháng 7 2021

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

14 tháng 8 2017

bài cô Nguyệt

1 tháng 11 2020

a)Để (n+3) chia hết cho (n+3) thì n={0:1:2:3:4:5:6:7:8:9}    

b)(2n+5)\(⋮n+2\)

   2(n+2)+1 chia hết cho (n+2)

Do 2(n+2)+1 chia hết cho n+2 nên 1 chia hết cho n+2

n+2=Ư(1)={1}

Lập bảng:

n+21
nloại

Vậy n=\(\varnothing\)

24 tháng 11 2017

Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3

=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

24 tháng 11 2017

vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp  , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2

+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2 

- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3

- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )

khi đó  n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3 

- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )

khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

mà ƯCLN( 2 ; 3 ) = 1

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3

=> n ( n + 1 ) ( n + 2 ) chia hết cho 6

chúc bạn học tốt

^^

6 tháng 3 2020

Ta có 2n+1=2(n-3)+7

Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3

Vì 2(n-3) chia hết cho n-3

=> 7 chia hết cho n-3

n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4 

Nếu n-3=-1 => n=2

Nếu n-3=1 => n=4

Nếu n-3=7 => n=10

6 tháng 3 2020

Ta có : \(2n+1⋮n-3\)

\(=>2n-6+7⋮n-3\)

\(Do:2n-6⋮n-3\)

\(=>7⋮n-3\)

\(=>n-3\inƯ\left(7\right)\)

Nên ta có bảng sau : 

n-371-7-1
n104-42

Vậy ...

13 tháng 9 2018

Tại sao phài chứng minh khi nhìn vào đã biết

13 tháng 9 2018

Easy:Tck cho mh đi