Viết phương trình đường thẳng y=ax+b \(\left(a\ne0\right)\)biết
a, (d) // y=2x+3 và cắt trục tung tại điểm có tung độ bằng 1
b, (d) vuông góc y=2x+3 và cắt trục hoành tại điểm có hoành độ bằng 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}a\cdot0+b=3\\-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=3\\a=\dfrac{3}{2}\end{matrix}\right.\)
b: Vì hệ số góc là 2 nên a=2
Vậy: y=2x+b
Thay x=0 và y=3 vào y=2x+b, ta được:
b=3
1. Gọi đường thẳng cần tìm là (d): y = ax + b.
Giao điểm của (d) và Oy là A (0;2) => b = 2 (1).
Giao điểm của (d) và Ox là B (-2;0) => 2a + b = 0 (2)
Từ (1) và (2) ta có a = -1, b = 2. Vậy (d): y = -x + 2.
2. \(\left\{{}\begin{matrix}mx-2x+y=3\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx-4x+2y=6\\3x-2y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2mx-x=m+6\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+6\\3x-2y=m\end{matrix}\right.\)
Để hệ có nghiệm duy nhất thì pt \(x\left(2m-1\right)=m+6\) có nghiệm duy nhất. Khi đó \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}.\)
3.
2x + 3y + 5 = 0 ⇔ \(y=\dfrac{-2}{3}x-\dfrac{5}{3}\)
Để hai đường thẳng trùng nhau thì \(a=\dfrac{-2}{3};b=\dfrac{-5}{3}\).
4.
Bán kính đường tròn ngoại tiếp hình vuông là \(\dfrac{\sqrt{2}}{\sqrt{2}}=1\left(cm\right)\).
Độ dài đường tròn ngoại tiếp hình vuông là: 2π (cm).
Gọi phương trình đường thẳng d cần tìm là y = a x + b ( a ≠ 0 )
Vì d cắt trục tung tại điểm có tung độ bằng 3 và cắt trục hoành tại điểm có hoành độ −4 nên d đi qua hai điểm A (0; 3); B (−4; 0).
Thay tọa độ điểm A vào phương trình đường thẳng d ta được: a .0 + b = 3 ⇒ b = 3
Thay tọa độ điểm B và b = 3 vào phương trình đường thẳng d ta được: a . − 4 + 3 = 0 ⇒ a = 3 4
Vậy phương trình đường thẳng cần tìm là y = 3 4 x + 3
Đáp án cần chọn là: B