Tìm x, biết :4a^2x=4a^2+9x-12a+9 (a khác -4)
Giúp mình vs ạ!!Thanks trc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=|m+1|+|m-1|=|m+1|+|1-m|>=|m+1+1-m|=2
Dấu = xảy ra khi -1<=m<=1
B=|2a-1|+|2a-3|=|2a-1|+|3-2a|>=|2a-1+3-2a|=2
Dấu = xảy ra khi 1/2<=a<=3/2
1) a^2 + b^2 + 2a - 2b - 2ab = (a^2 - 2ab + b^2) + (2a-2b) = (a-b)^2 + 2(a-b) = (a-b)(a-b+2)
2) 4a^2 - 4b^2 - 4a + 1 = ( 4a^2 - 4a +1) - 4b^2 = (2a-1)^2 - 4b^2 = (2a-1-2b)(2a-1+2b)
3) a^3+6a^2+12a+8= (a^3+8)+(6a^2+12a)= (a+2)(a^2-2a+4)+6a(a+2)=(a+2)(a^2-2a+4+6a)=(a+2)(a^2+4a+4)=(a+2)(a+2)^2=(a+2)^3
\(b,=1^2-\left(x-y\right)^2=\left(1+x-y\right)\left(1-x+y\right)\)
\(c,=\left(x^2+1\right)^2-\left(2x\right)^2=\left(x^2+2x+1\right)\left(x^2-2x+1\right)=\left(x+1\right)^2\left(x-1\right)^2\)
1-x-2x^2
= 1-x-2x.2x
= 1 - ( x + 2x.2x)
= 1 - 5x
Để 1-x-2x^2 mang giá trị lớn nhất thì x phài là số âm.
\(A=1-x-2x^2\)
\(=-2\left(x^2+2\times x\times\frac{1}{4}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2-\frac{1}{2}\right)\)
\(=-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(\left(x+\frac{1}{4}\right)^2\ge0\)
\(\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\ge-\frac{9}{16}\)
\(-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\le\frac{9}{8}\)
Vậy Max A = \(\frac{9}{8}\) khi x = \(-\frac{1}{4}\)
a: \(x^2+6xy+9y^2=\left(x+3y\right)^2\)
b: \(4a^4-4a^2b^2+b^4=\left(2a^2-b^2\right)^2\)
\(x^6-2x^3y+y^2=\left(x^3-y\right)^2\)
b: \(\left(x+y\right)^3-\left(x-y\right)^3\)
\(=\left(x+y-x+y\right)\left(x^2+2xy+y^2+x^2-y^2+x^2-2xy+y^2\right)\)
\(=2y\left(3x^2+y^2\right)\)
\(25x^4-10x^2y^2+y^4=\left(5x^2-y^2\right)^2\)
\(-a^2-2a-1=-\left(a+1\right)^2\)