Cho tam giác ABC Đường cao AH.gọi I là trung Điểm AC,E là điểm đối xứng h qua I.cmr tg AHCE là hình chữ nhật.Gọi K là trung Điểm của AH CMR HC=2.IC và Ik vuông góc AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ahc có hi và am là trung tuyến của tam giác nên k là trọng tâm tam giác ahc.
suy ra ik=1/3IH => ik=1/2kh.
chứng minh tương tự ta có ig=1/2ge.
Ta có IH=IE nên ik=ig => hk=ge=2ik
Mà 2ik=kg nên HG=GK=KE
a/
Ta có
IA=IC (gt)
IH=IE (gt)
=> AHCE là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
\(AH\perp BC\Rightarrow\widehat{AHC}=90^o\)
=> AHCE là hình chữ nhật (hình bình hành có 1 góc vuông là HCN)
b/
Xét tg AHC có
MH=MC (gt)
IA=IC (gt)
=> G là trong tâm của tg AHC \(\Rightarrow HG=2IG\) (1)
\(\Rightarrow HG+IG=IH=3IG\) (2)
Chứng minh tương tự ta có K là trọng tâm của tg ACE
\(\Rightarrow KE=2IK\left(3\right)\Rightarrow KE+IK=IE=3IK\) (4)
Mà IH=IE (gt) (5)
Từ (2) (4) (5) => IG=IK (6)
Từ (1) (3) (6) => HG=KE
Mà IG=IK => IG+IKGK=2IK=KE
=> HG=GK=KE
sai đề rồi cậu ơi! I là trung điểm của AC rồi đằng sau I còn là trung điểm của HC, CE
a: Xét tứ giác AHCE có
I là trung điểm của đường chéo AC
I là trung điểm của đường chéo HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔAHB có
K là trung điểm của AB
M là trung điểm của BH
Do đó: KM là đường trung bình của ΔAHB
Suy ra: KM//AH
hay KM\(\perp\)BH
Xét ΔAHC có
I là trung điểm của AC
N là trung điểm của HC
Do đó: IN là đường trung bình của ΔAHC
Suy ra: IN//AH
hay IN\(\perp\)BC
Xét ΔABC có
K là trung điểm của AB
I là trung điểm của AC
Do đó: KI là đường trung bình của ΔBAC
Suy ra: KI//BC
hay KI\(\perp\)AH
mà AH//KM
nên KI\(\perp\)KM
Xét tứ giác KINM có
\(\widehat{IKM}=\widehat{KMN}=\widehat{INM}=90^0\)
Do đó: KINM là hình chữ nhật
Suy ra: KN=IM
a, tứ giác AHCE là hình chữ nhật , vì AD=DC và HD=DE
b, áp dụng đl pytago vào tam giác vuông AHC( H là đường cao ABC):
\(HC^2=AC^2-AH^2\\ HC^2=10^2-6^2\\ HC=\sqrt{10^2-6^2}=8cm\)
\(S_{AHCE}=AH.HC=6.8=48cm^2\)
a: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Đề sai rồi bạn
a/ Xét tứ giác AHCE có
IA=IC (đề bài)
IH=IE (đề bài)
=> AHCE là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
^AHC=90 (AH vuông góc BC)
=> AHCE là HCN
b/
+ Xét tg AHC có
IA=IC => HI là trung tuyến
MH=MC (đề bài) => AM là trung tuyến
=> G là trọng tâm của tam giác AHC \(\Rightarrow IG=\frac{IH}{3}\Rightarrow IG=\frac{GH}{2}\)
+ Xét tam giác ACE chứng minh tương tự ta cũng có \(IK=\frac{IE}{3}\Rightarrow IK=\frac{KE}{2}\)
Mà IH = IE
=> IK=IG => GH=KE=KI+KG=GK
a: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔHKC có
M là trung điểm của HC
MG//KC
Do đó:G là trung điểm của HK
=>HG=GK(1)
Xét ΔEGC có
N là trung điểm của EC
NK//GC
Do đó: K là trung điểm của EG
=>EK=KG(2)
Từ (1) và (2) suy ra EK=KG=HG