K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái

21 tháng 10 2019

a, HS tự làm

b, Ta có DAHI đồng dạng với DABK (g.g)

=>AH.AK = AI.AB =  R 2

c, Chứng minh được I là trung điểm của CD

Từ MCND là hình chữ nhật suy ra MN và CD cắt nhau tại trung điểm của mỗi đường => ĐPCM

d, Chứng minh được  I O C ^ = 60 0  => ∆ACO đều nên  A C D ^ = 30 0

Chứng minh được DCBD đều nên CD = CB => CD = 25cm

Áp dụng tỉ số lượng giác trong ∆CDM ( M ^ = 90 0 ) ta tính được: MD = 12,5cm và MC = 21,7 cm

Từ đó tính được diện tích xung quanh hình trụ tạo thành khi cho tứ giác MCND quay quanh MD là:  S x q = 2 r πh = 542 , 5 πcm 2

10 tháng 3 2017

a, Tứ giác BIHK nội tiếp (tổng hai góc đối bằng 180 0 )

b, Chứng minh AH.AK = AI.AB = 1 2 R.2R = R 2  => ĐPCM

c, MCND là hình chữ nhật => MN, AB, CD đồng quy tại I là trung điểm của CD

d, Tam giác OCA đều =>  A B C ^ = 30 0 ; M C D ^ = 60 0

Tính được CD = 2CI =  2 . 25 2 = 25cm; CM =  25 2 cm, MD =  25 3 2 cm, Sxq = 2.π.CM.MD =  625 3 2 πcm 2

18 tháng 12 2023

a: E đối xứng A qua H

=>H là trung điểm của AE

Ta có: ΔOCD cân tại O

mà OH là đường cao

nên H là trung điểm của CD

Xét tứ giác ACED có

H là trung điểm chung của AE và CD

=>ACED là hình bình hành

Hình bình hành ACED có AE\(\perp\)CD

nên ACED là hình thoi

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB

Ta có: AC\(\perp\)CB

DE//AC(ACED là hình thoi)

Do đó: DE\(\perp\)BC tại I

=>ΔEIB vuông tại I

=>I nằm trên đường tròn tâm O', đường kính EB

Ta có: OO'+O'B=OB

=>O'O=OB-O'B=R1-R2

=>(O) và (O') tiếp xúc trong với nhau tại B

c: ΔDIC vuông tại I

mà IH là đường trung tuyến

nên HI=HD

=>ΔHID cân tại H

=>\(\widehat{HID}=\widehat{HDI}=90^0-\widehat{DCB}\)

Ta có: O'E=O'I

=>ΔO'EI cân tại O'

=>\(\widehat{O'IE}=\widehat{O'EI}\)

mà \(\widehat{O'EI}=\widehat{HED}\)(hai góc đối đỉnh)

và \(\widehat{HED}=\widehat{DCB}\)(=90 độ-CDE)

nên \(\widehat{O'IE}=\widehat{DCB}\)

Ta có: \(\widehat{HIO'}=\widehat{HIE}+\widehat{O'IE}\)

\(=90^0-\widehat{DCB}+\widehat{DCB}=90^0\)

=>HI là tiếp tuyến của (O')

14 tháng 9 2019

a,  H I B ^ = H K B ^ = 180 0

=> Tứ giác BIHK nội tiếp

b, Chứng minh được: DAHI ~ DABK (g.g)

=> AH.AK = AI.AB = R 2 (không đổi)

c, Chứng minh được MCND là hình chữ nhật từ đó => Đpcm

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Lời giải:

a) Vì $OC=OD$ nên tam giác 4COD$ là tam giác cân tại $O$. Do đó đường cao $OI$ đồng thời là đường trung trực của $CD$ hay $AO$ là trung trực $CD$.

Vậy tứ giác $ACOD$ có 2 đường chéo $AO, CD$ thỏa mãn $AO$ là trung trực của $CD$ và $CD$ là trung trực của $AI$ nên $ACOD$ là hình thoi. 

b) $B\in AO$ và $AO$ là trung trực $CD$ nên $BC=BD(1)$

Áp dụng định lý Pitago:

$CD=2CI=2\sqrt{CO^2-IO^2}=2\sqrt{R^2-(\frac{R}{2})^2}=\sqrt{3}R$

$CB=\sqrr{CI^2+IB^2}=\sqrt{(\frac{\sqrt{3}}{2})^2+(\frac{3}{2})^2}=\sqrt{3}R$

$\Rightarrow CD=CB(2)$

Từ $(1);(2)\Rightarrow CD=CB=BD$ nên tam giác $BCD$ đều (đpcm)

c) 

Chu vi: $P=3CD=3\sqrt{3}R$ (đơn vị độ dài)

Diện tích: $S=\frac{BI.CD}{2}=\frac{\frac{3}{2}R.\sqrt{3}R}{2}=\frac{3\sqrt{3}R^2}{4}$ (đơn vị diện tích)

AH
Akai Haruma
Giáo viên
4 tháng 1 2021

Hình vẽ:

undefined

11 tháng 3 2018

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích tam giác BCD bằng:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích này lớn nhất khi AI // CD.