CMR với mọi a, b, c > 0 thì:
\(a^2+b^2+c^2+2abc=1\Leftrightarrow\frac{a}{a+bc}+\frac{b}{b+ca}+\frac{c}{c+ab}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}+2=\frac{1}{abc}\)
Đặt \(\left(\frac{a}{bc};\frac{b}{ac};\frac{c}{ab}\right)=\left(x;y;z\right)\)
\(\Rightarrow x+y+z+2=xyz\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=1\)
\(\Leftrightarrow\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2\)
\(\Leftrightarrow\frac{a}{a+bc}+\frac{b}{c+ca}+\frac{c}{c+ab}=2\)
ÁP dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)
Mà \(ab\le\frac{a^2+b^2}{2}\Rightarrow\frac{a^2+b^2}{c^2+ab}\ge\frac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}\)
Tương tự, ta có
\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge2\left(\frac{a^2+b^2}{a^2+c^2+b^2+c^2}+...\right)\)
Đặt \(\left(a^2+b^2;...\right)=\left(x;y;z\right)\)
Ta có VT\(\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+zx}+\frac{y^2}{ỹ+yz}+\frac{z^2}{zx+zy}\right)\)
=> \(VT\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)
=> \(A\ge\frac{9}{2}\left(ĐPCM\right)\)
Dấu = xảy ra <=> a=b=c>0
Giả sử b= min {a,b,c}
\(VT\ge\frac{a^3+b^3+c^3}{\frac{2\left(a+b+c\right)^3}{27}}+\frac{1}{2}\left(\Sigma\frac{\left(a+b\right)^2}{ab+c^2}+\Sigma\frac{\left(a-b\right)^2}{ab+c^2}\right)\)
\(\ge\left[\frac{27\left(a^3+b^3+c^3\right)}{2\left(a+b+c\right)^3}+\frac{2\left(a+b+c\right)^2}{\left(ab+bc+ca+a^2+b^2+c^2\right)}\right]\)
Sau khi quy đồng ta cần chứng minh biểu thức sau đây không âm:
Đó là điều hiển nhiên vì b = min {a,b,c}
\(\frac{bc+a^2}{a+b}+\frac{ac+b^2}{b+c}+\frac{ab+c^2}{a+c}\ge\)a+b+c
<=>\(\frac{bc+a^2}{a+b}-a+\frac{ac+b^2}{b+c}-b+\frac{ab+c^2}{a+c}-c\ge0\)
<=>\(\frac{b\left(c-a\right)}{a+b}+\frac{c\left(a-b\right)}{b+c}+\frac{a\left(b-c\right)}{a+c}\ge0\)
<=>\(\frac{b\left(b+c\right)\left(a+c\right)\left(a-c\right)}{\left(a+b\right)\left(c+c\right)\left(a+c\right)}\)+\(\frac{c\left(a+c\right)\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a\left(a+b\right)\left(b-c\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{b^2c^2-b^2a^2+bc^3-a^2bc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^3c-ab^2c+c^2a^2-b^2c^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)+\(\frac{a^2b^2-a^2c^2+ab^3-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{bc^3+a^3c+ab^3-a^2bc-ab^2c-abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)
<=>\(\frac{2bc^3+2a^3c+2ab^3-2a^2bc-2ab^2c-2abc^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)>=0
<=>\(\frac{bc\left(c-a\right)^2+ac\left(a-b\right)^2+ab\left(b-c\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)(đung voi moi a,b,c >0)
Dấu ''='' xay ra khi a=b=c
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
Áp dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)
Mà \(\frac{a^2+b^2}{c^2+ab}\ge\frac{a^2+b^2}{c^2+\frac{a^2+b^2}{2}}=2\frac{a^2+b^2}{2c^2+a^2+b^2}\)
tương tự thì \(P\ge\frac{3}{2}+2\left(\frac{a^2+b^2}{2c^2+a^2+b^2}+\frac{b^2+c^2}{2a^2+b^2+c^2}+\frac{c^2+a^2}{2b^2+a^2+c^2}\right)\)
Đặt \(\hept{\begin{cases}a^2+b^2=x\\b^2+c^2=y\\c^2+a^2=z\end{cases}}\)
ta có \(P\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+xz}+\frac{y^2}{yz+yx}+\frac{z^2}{zx+zy}\right)\)
=>\(P\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+2.\frac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)
dấu xảy ra <>a=b=c>0
Vậy ...
^_^
Bunhiacopxki:
\(\left(a^2+bc+ca\right)\left(b^2+bc+ca\right)\ge\left(ab+bc+ca\right)^2\)
\(\Rightarrow\dfrac{ab}{a^2+bc+ca}\le\dfrac{ab\left(b^2+bc+ca\right)}{\left(ab+bc+ca\right)^2}\)
Tương tự: \(\dfrac{bc}{b^2+ca+ab}\le\dfrac{bc\left(c^2+ca+ab\right)}{\left(ab+bc+ca\right)^2}\)
\(\dfrac{ca}{c^2+ab+bc}\le\dfrac{ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
\(\Rightarrow VT\le\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\)
Nên ta chỉ cần chứng minh:
\(\dfrac{ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)}{\left(ab+bc+ca\right)^2}\le\dfrac{a^2+c^2+c^2}{ab+bc+ca}\)
\(\Leftrightarrow ab\left(b^2+bc+ca\right)+bc\left(c^2+ca+ab\right)+ca\left(a^2+ab+bc\right)\le\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)\)
Nhân phá và rút gọn 2 vế:
\(\Leftrightarrow a^3b+b^3c+c^3a\ge abc\left(a+b+c\right)\)
\(\Leftrightarrow\dfrac{a^3b+b^3c+c^3a}{abc}\ge a+b+c\)
\(\Leftrightarrow\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge a+b+c\)
Đúng do: \(\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c\)
\(\Leftrightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}+2=\frac{1}{abc}\)
Đặt : \(\left(\frac{a}{bc};\frac{b}{ac};\frac{c}{ab}\right)=\left(x,y,z\right)\)
\(x+y+z+2=xyz\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)
\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)
\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+1=1\)
\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2\)
\(\Leftrightarrow\frac{a}{a+bc}+\frac{b}{b+ca}+\frac{c}{c+ab}=2\)