K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

A B C E H M

Cm:Xét tứ tứ giác AEBH có: EM = MH (gt); AM = MB (gt)

                              \(\widehat{AHB}=90^0\)

=> tứ giác AEBH là hình chữ nhật

=> AE // BH hay AE // BC

b) Xét t/giác ABC cân tại A có AH là đường cao

=> AH cũng là đường trung tuyến

=> BH = HC

Ta có: AEBH là hình chữ nhật => AE = BH

            mà BH = HC (cmt)

=> AE = HC

Xét tứ giác ACHE có AE // HC (cmt)

      AE = HC (cmt)

=> ACHE là hình bình hành

c)  Để hình chữ nhật AHBE là hình vuông

<=> AH = HB 

<=> t/giác AHB là t/giác vuông cân

<=> \(\widehat{BAH}=45^0\)

<=> \(\widehat{A}=90^0\) (Do t/giác ABC cân có AH là đường cao => AH là đường trung tuyến)

<=> t/giác ABC vuông cân

Vậy ...

29 tháng 12 2022

Thi đề phòng sớm sớm zậy :))) Thi xong gửi đề cho tui nhe 

Hình tự kẻ :

a.

Xét Tam giác CMI và tam giác AKI có:

AI=CI ( I là trung điểm của AC )

góc CIM = góc AIK ( đối đỉnh )

MI = IK ( K đối xứng M qua I )

=> Tam giác CMI = tam giác AKI ( cgc)

=> Góc CMI = Góc IKA ( 2 góc tương ứng )

=> Góc CMK = góc AKM ( slt ) 

=> AK // MC => AK //  BC

b) 

Tam giác ABC có:

M là trung điểm của BC (gt)

I là trung điểm của AC (gt)

=> MI là đường trung bình của tam giác ABC 

=>\(MI=\dfrac{1}{2}AB\); MI // AB ( tính chất đường trung bình )

Ta có :

K đối xứng với M qua I (gt)

=> I là trung điểm của KM => \(MI=IK=\dfrac{1}{2}MK\)

Ta lại có :

\(MI=IK=\dfrac{1}{2}MK\left(cmt\right)\Rightarrow MK=2MI\left(1\right)\)

\(MI=\dfrac{1}{2}AB\left(cmt\right)\Rightarrow AB=2MI\left(2\right)\)

Từ 1 và 2 ⇒ AB = MK 

Tứ giác ABMK có:

AB = MK (cmt)

MK // AB ( MI // AB )

=> tứ giác ABMK Là hình bình hành 

c)

Giả sử tứ giác AMCK là Hình Vuông => AM = MC = CK = AK ( tính chất hình vuông )

Tam giác ABC cân có:

AM là đường trung tuyến ( M là trung điểm của BC )

Mà : AM = MC ( cmt )

\(\Rightarrow AM=MC=\dfrac{1}{2}BC\)

\(\Rightarrow\Delta ABC\) vuông cân tại A

Vậy .....

 

26 tháng 1 2022

a) Xét tứ giác AMCK:

I là trung điểm của AC (gt).

I là trung điểm của MK (K là điểm đối xứng với M qua I).

Mà \(\widehat{AMC}=90^o\left(AM\perp BC\right).\)

=> Tứ giác AMCK là hình chữ nhật (dhnb).

b) Xét tam giác ABC cân tại A: AM là đường cao (gt).

=> AM là trung tuyến (Tính chất tam giác cân).

=> M là trung điểm của BC.

=> BM = MC.

Ta có: AK = MC (Tứ giác AMCK là hình chữ nhật).

          BM = MC (cmt).

=> AK = MC = BM.

Ta có: AK // MC (Tứ giác AMCK là hình chữ nhật).

=> AK // BM.

Xét tứ giác AKMB:

AK // BM (cmt).

AK /= BM (cmt).

=> Tứ giác AKMB là hình bình hành (dhnb).

c) Tứ giác AMCK là hình vuông (gt).

=> AK = AM (Tính chất hình vuông).

Mà AK = BM (cmt).

=> AM = BM = AK.

Mà BM = \(\dfrac{1}{2}\) BC (M là trung điểm BC).

=> AM = BM = AK = \(\dfrac{1}{2}\) BC.

Xét tam giác ABC cân tại A: 

AM = \(\dfrac{1}{2}\) BC (cmt).

=> Tam giác ABC vuông cân tại A.

13 tháng 12 2022

MIK ĐANG CẦN GẤP , GIÚP MIK VS AH

 

13 tháng 12 2022

Bài 3:

a: Xét tứ giác AMBH có

I là trung điểm chung của AB và MH

MA=MB

Do đó; AMBH là hình thoi

b: Xét ΔBAC có BI/BA=BM/BC

nên IM//AC

=>MH//AC

=>IH//AC

c: Để AHBM là hình vuông thì góc AMB=90 độ

=>ΔABC cân tại A

=>AB=AC

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:

a. $M,N$ đối xứng nhau qua $O$ nghĩa là $O$ là trung điểm $MN$

Tứ giác $AMBN$ có 2 đường chéo $AB, MN$ cắt nhau tại trung điểm $O$ của mỗi đường nên $AMBN$ là hbh $(1)$

Mặt khác, tam giác $ABC$ cân tại $A$ nên trung tuyến $AM$ đồng thời là đường cao

$\Rightarrow AM\perp BC$ nên $\widehat{AMB}=90^0(2)$

Từ $(1); (2)\Rightarrow AMBN$ là hình chữ nhật

b. Vì $AMBN$ là hcn nên $BM\parallel AN$ và $BM=AN$

Mà $B,M,C$ thẳng hàng và $BM=MC$ nên:

$AN\parallel CM, AN=CM$

$\Rightarrow ACMN$ là hình bình hành 

c. 
$ACMN$ là hbh nên $MN\parallel AC$

Để $ACMN$ là hình vuông thì $MN\perp AB$

$\Leftrightarrow AC\perp AB$

$\Leftrightarrow ABC$ là tam giác vuông tại $A$

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Hình vẽ:

9 tháng 11 2015

c. Hình chữ nhật ADBH là hình vuông  \(\Leftrightarrow\) AB vuông góc HD

Mà AC // HD (do ADHC là hình bình hành)  

                                                         \(\Leftrightarrow\)   AB vuông góc với AC

                                                         \(\Leftrightarrow\)   góc BAC = 90 độ

                                                         \(\Leftrightarrow\) tam giác ABC vuông tại A

Vậy, khi tam giác ABC vuông cân tại A thì tứ giác ADBH là hình vuông .

14 tháng 12 2022

a: \(S_{ABC}=\dfrac{12\cdot10}{2}=60\left(cm^2\right)\)

b: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

góc AHB=90 độ

Do đó: AHBE là hình chữ nhật

c: Xét tứ giác ABFC có

H là trung điểm chung của AF và BC

AB=AC

Do đo: ABFC là hình thoi

a: Xét tứ giác AHBE có

M là trung điểm chung của AB và HE

góc AHB=90 độ

Do đó: AHBE là hình chữ nhật

b: Xét tứ giác ABFC có

H là trung điểm chung của AF và BC

AB=AC

Do đó:ABFC là hình thoi