Giải phương trình trên(nêu rõ cách giải):
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-2\sqrt{x-1}}=2\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình trên(nêu rõ cách giải):
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-2\sqrt{x-1}}=2\sqrt{2}\)
\(\left(x-1\right)-4\sqrt{x-1}+4+\left(y-2\right)-6\sqrt{y-2}+9+\left(z-3\right)-8\sqrt{z-3}+16=0\)
\(\left(\sqrt{x-1}-2\right)^2+\left(\sqrt{y-2}-3\right)^2+\left(\sqrt{z-3}-4\right)^2=0\)
giải ra x=5 y=11 z=19
a) \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \)
\(\begin{array}{l} \Rightarrow {x^2} - 7x = - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{5}\) và \(x = \frac{1}{2}\)
Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x} = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x = - \frac{3}{5}\) thỏa mãn phương trình
Vậy nghiệm của phương trình là \(x = - \frac{3}{5}\)
b) \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\)
\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8} = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)
Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8} - \sqrt {{x^2} + 4x + 1} = 0\) ta thấy thỏa mãn phương trình
Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)
c) \(\sqrt {4{x^2} + x - 1} = x + 1\)
\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)
\( \Rightarrow x = - \frac{2}{3}\) và \(x = 1\)
Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1} = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn
Vậy nghiệm của phương trình trên là \(x = - \frac{2}{3}\) và \(x = 1\)
d) \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \)
\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)
\( \Rightarrow x = - \frac{3}{2}\) và \(x = 7\)
Thay hai nghiệm \(x = - \frac{3}{2}\) và \(x = 7\) vào phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình
Vậy phương trình \(\sqrt {2{x^2} - 10x - 29} = \sqrt {x - 8} \) vô nghiệm
Do có quá ít câu hỏi nên bạn nào trả lời được, mình sẽ xóa khỏi mục "Câu hỏi hay" nhé!
1.
\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)
2.
a, ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
b, ĐK: \(x\ge3\)
\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)
Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$
PT $\Leftrightarrow 5x-2=7^2=49$
$\Leftrightarrow 5x=51$
$\Leftrightarrow x=\frac{51}{5}=10,2$
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$
$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$
$\Leftrightarrow 8\sqrt{x-3}=24$
$\Leftrightarrow \sqrt{x-3}=3$
$\Leftrightarrow x-3=9$
$\Leftrightarrow x=12$ (tm)
Bài 1:
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$
$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$
$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$
$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$
Nếu $x-3=0$
$\Leftrightarrow x=3$ (tm)
Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$
$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)
$\Leftrightarrow a^3+a^2-2=0$
$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$
$\Leftrightarrow (a-1)(a^2+2a+2)=0$
Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$
$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)
Vậy pt có nghiệm duy nhất $x=3$.
a.
ĐKXĐ: \(x\ge0\)
\(\sqrt{2x^2+13x+5}-5\sqrt{x}+\sqrt{2x^2-3x+5}-3\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2-12x+5}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{2x^2-12x+5}{\sqrt{2x^2-3x+5}+3\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-12x+5\right)\left(\dfrac{1}{\sqrt{2x^2+13x+5}+5\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-3x+5}+3\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-12x+5=0\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(x^2\ge\dfrac{4}{3}\)
\(\sqrt{x^2-\dfrac{4}{3}}+\sqrt{4x^2-4}-x=0\)
\(\Leftrightarrow\sqrt{\dfrac{3x^2-4}{3}}+\dfrac{3x^2-4}{\sqrt{4x^2-4}+x}=0\)
\(\Leftrightarrow\sqrt{3x^2-4}\left(\dfrac{1}{\sqrt{3}}+\dfrac{\sqrt{3x^2-4}}{\sqrt{4x^2-4}+x}\right)=0\)
\(\Leftrightarrow3x^2-4=0\)
\(\Leftrightarrow...\)