giải phương trình
a,\(2sin^2x-5sinx.cosx-3cos^2x=2\)
b,\(\sqrt{3}sin7x-cos7x=2sin\left(5x-\frac{pi}{6}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+4=4\left(\sqrt{3}sinx+cosx\right)\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+\frac{5}{2}=4\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+\frac{5}{2}=4sin\left(x+\frac{\pi}{6}\right)\)
\(\Leftrightarrow2sin^2\left(x+\frac{\pi}{6}\right)+4sin\left(x+\frac{\pi}{6}\right)-\frac{7}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{-2+\sqrt{11}}{2}\\sin\left(x+\frac{\pi}{6}\right)=\frac{-2-\sqrt{11}}{2}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{6}+arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\\x=\frac{5\pi}{6}-arcsin\left(\frac{-2+\sqrt{11}}{2}\right)+k2\pi\end{matrix}\right.\)
c/
\(\Leftrightarrow1-cos2x+\sqrt{3}sin2x+2\sqrt{3}sinx+2cosx=2\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x+2\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx\right)=\frac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)=\frac{1}{2}\)
\(\Leftrightarrow cos\left(2x+\frac{\pi}{3}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow cos2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow1-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)-\frac{1}{2}=0\)
\(\Leftrightarrow-2sin^2\left(x+\frac{\pi}{6}\right)+2sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}=0\)
\(\Rightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=\frac{1+\sqrt{2}}{2}\left(l\right)\\sin\left(x+\frac{\pi}{6}\right)=\frac{1-\sqrt{2}}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\\x+\frac{\pi}{6}=\pi-arcsin\left(\frac{1-\sqrt{2}}{2}\right)+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=...\)
a: \(A=\sqrt{3}\left(\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx\right)+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)
\(=\dfrac{\sqrt{3}}{2}sinx-\dfrac{3}{2}cosx+\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\)
\(=\sqrt{3}sinx-cosx\)
c: \(=2\left[\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right]+4sinx+1\)
\(=\sqrt{3}sin2x-cos2x+4sinx+1\)
d: \(D=\sqrt{3}cos2x+sin2x+2\cdot\left(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x\right)\)
\(=\sqrt{3}\cdot cos2x+sin2x+\sqrt{3}\cdot sin2x-cos2x\)
\(=cos2x\left(\sqrt{3}-1\right)+sin2x\left(1+\sqrt{3}\right)\)
`a)sin x =4/3`
`=>` Ptr vô nghiệm vì `-1 <= sin x <= 1`
`b)sin 2x=-1/2`
`<=>[(2x=-\pi/6+k2\pi),(2x=[7\pi]/6+k2\pi):}`
`<=>[(x=-\pi/12+k\pi),(x=[7\pi]/12+k\pi):}` `(k in ZZ)`
`c)sin(x - \pi/7)=sin` `[2\pi]/7`
`<=>[(x-\pi/7=[2\pi]/7+k2\pi),(x-\pi/7=[5\pi]/7+k2\pi):}`
`<=>[(x=[3\pi]/7+k2\pi),(x=[6\pi]/7+k2\pi):}` `(k in ZZ)`
`d)2sin (x+pi/4)=-\sqrt{3}`
`<=>sin(x+\pi/4)=-\sqrt{3}/2`
`<=>[(x+\pi/4=-\pi/3+k2\pi),(x+\pi/4=[4\pi]/3+k2\pi):}`
`<=>[(x=-[7\pi]/12+k2\pi),(x=[13\pi]/12+k2\pi):}` `(k in ZZ)`
a: sin x=4/3
mà -1<=sinx<=1
nên \(x\in\varnothing\)
b: sin 2x=-1/2
=>2x=-pi/6+k2pi hoặc 2x=7/6pi+k2pi
=>x=-1/12pi+kpi và x=7/12pi+kpi
c: \(sin\left(x-\dfrac{pi}{7}\right)=sin\left(\dfrac{2}{7}pi\right)\)
=>x-pi/7=2/7pi+k2pi hoặc x-pi/7=6/7pi+k2pi
=>x=3/7pi+k2pi và x=pi+k2pi
d: 2*sin(x+pi/4)=-căn 3
=>\(sin\left(x+\dfrac{pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)
=>x+pi/4=-pi/3+k2pi hoặc x-pi/4=4/3pi+k2pi
=>x=-7/12pi+k2pi hoặc x=19/12pi+k2pi
a: \(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)+\sqrt{3}=0\)
=>\(2\cdot sin\left(x+\dfrac{\Omega}{5}\right)=-\sqrt{3}\)
=>\(sin\left(x+\dfrac{\Omega}{5}\right)=-\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}x+\dfrac{\Omega}{5}=-\dfrac{\Omega}{3}+k2\Omega\\x+\dfrac{\Omega}{5}=\dfrac{4}{3}\Omega+k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{8}{15}\Omega+k2\Omega\\x=\dfrac{4}{3}\Omega-\dfrac{\Omega}{5}+k2\Omega=\dfrac{17}{15}\Omega+k2\Omega\end{matrix}\right.\)
b: \(sin\left(2x-50^0\right)=\dfrac{\sqrt{3}}{2}\)
=>\(\left[{}\begin{matrix}2x-50^0=60^0+k\cdot360^0\\2x-50^0=300^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}2x=110^0+k\cdot360^0\\2x=350^0+k\cdot360^0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=55^0+k\cdot180^0\\x=175^0+k\cdot180^0\end{matrix}\right.\)
c: \(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)-1=0\)
=>\(\sqrt{3}\cdot tan\left(2x-\dfrac{\Omega}{3}\right)=1\)
=>\(tan\left(2x-\dfrac{\Omega}{3}\right)=\dfrac{1}{\sqrt{3}}\)
=>\(2x-\dfrac{\Omega}{3}=\dfrac{\Omega}{6}+k2\Omega\)
=>\(2x=\dfrac{1}{2}\Omega+k2\Omega\)
=>\(x=\dfrac{1}{4}\Omega+k\Omega\)
Pt \(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\dfrac{4\pi}{3}+k2\pi\end{matrix}\right.\),\(k\in Z\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
Hôm qua họ bảo toi ra lấy CCCD nma toi chưa đi, nay toi đi họ lại đang họp, liệu mai toi đi có bị ăn chửi ko, mn cho ý kiến đi :<
\(2sin\left(2x-\dfrac{\pi}{4}\right)+\sqrt{3}=0\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{4}\right)=sin\left(-\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+k2\pi\\2x-\dfrac{\pi}{4}=\pi+\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-\dfrac{\pi}{12}+k2\pi\\2x=\dfrac{19\pi}{12}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{24}+k\pi\\x=\dfrac{19\pi}{24}+k\pi\end{matrix}\right.\)
b) \(2sin^2x-3sinxcosx+cos^2x=0\)
\(\Leftrightarrow2tan^2x-3tanx+1=0\left(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=tan\dfrac{\pi}{4}\\tanx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{2}\right)+k\pi\end{matrix}\right.\left(k\in Z\right)\)
\(\dfrac{2sin^3x+2\sqrt{3}sin^2x.cosx-2sin^2x+cos\left(2x+\dfrac{\pi}{3}\right)}{2cosx-\sqrt{3}}=0\)
a: =>2sin(x+pi/3)=-1
=>sin(x+pi/3)=-1/2
=>x+pi/3=-pi/6+k2pi hoặc x+pi/3=7/6pi+k2pi
=>x=-1/2pi+k2pi hoặc x=2/3pi+k2pi
b: =>2sin(x-30 độ)=-1
=>sin(x-30 độ)=-1/2
=>x-30 độ=-30 độ+k*360 độ hoặc x-30 độ=180 độ+30 độ+k*360 độ
=>x=k*360 độ hoặc x=240 độ+k*360 độ
c: =>2sin(x-pi/6)=-căn 3
=>sin(x-pi/6)=-căn 3/2
=>x-pi/6=-pi/3+k2pi hoặc x-pi/6=4/3pi+k2pi
=>x=-1/6pi+k2pi hoặc x=3/2pi+k2pi
d: =>2sin(x+10 độ)=-căn 3
=>sin(x+10 độ)=-căn 3/2
=>x+10 độ=-60 độ+k*360 độ hoặc x+10 độ=240 độ+k*360 độ
=>x=-70 độ+k*360 độ hoặc x=230 độ+k*360 độ
e: \(\Leftrightarrow2\cdot sin\left(x-15^0\right)=-\sqrt{2}\)
=>\(sin\left(x-15^0\right)=-\dfrac{\sqrt{2}}{2}\)
=>x-15 độ=-45 độ+k*360 độ hoặc x-15 độ=225 độ+k*360 độ
=>x=-30 độ+k*360 độ hoặc x=240 độ+k*360 độ
f: \(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=-\dfrac{1}{\sqrt{2}}\)
=>x-pi/3=-pi/4+k2pi hoặc x-pi/3=5/4pi+k2pi
=>x=pi/12+k2pi hoặc x=19/12pi+k2pi
g) \(3+\sqrt[]{5}sin\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=-\dfrac{3}{\sqrt[]{5}}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{3}\right)=sin\left[arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)\right]\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\\x+\dfrac{\pi}{3}=\pi-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)-\dfrac{\pi}{3}+k2\pi\\x=\dfrac{2\pi}{3}-arcsin\left(-\dfrac{3}{\sqrt[]{5}}\right)+k2\pi\end{matrix}\right.\)
h) \(1+sin\left(x-30^o\right)=0\)
\(\Leftrightarrow sin\left(x-30^o\right)=-1\)
\(\Leftrightarrow sin\left(x-30^o\right)=sin\left(-90^o\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-30^o=-90^0+k360^o\\x-30^o=180^o+90^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-60^0+k360^o\\x=300^0+k360^o\end{matrix}\right.\)
\(\Leftrightarrow x=-60^0+k360^o\)