\((x^2-3x+9)(x^2+5x+9)=9x^2\)
giải pt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐKXĐ:x\ge-1,5\)
\(=>\left(2\sqrt{2x^3+5x^2+9x+9}\right)^2=\left(x^2+3x+6\right)^2\)
=>\(8x^3+20x^2=x^4+6x^3+21x^2\) ( Đã đc rút gọn )
=> \(x^4+6x^3+21x^2-\left(8x^3+20x^2\right)=0\)
=> \(x^4-2x^3+x^2=0\)
=> \(x^2\left(x-1\right)^2=0\)
=> \(\left[{}\begin{matrix}x^2=0\\\left(x-1\right)^2=0\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\left|x\right|=\sqrt{0}\\\left|x-1\right|=\sqrt{0}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy....
a/ đk: \(\left[{}\begin{matrix}x\le\frac{-5-3\sqrt{5}}{10}\\x\ge\frac{-5+3\sqrt{5}}{10}\end{matrix}\right.\)\(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
\(\Leftrightarrow\sqrt{x^2+x+1}+\sqrt{3\left(x^2+x+1\right)-1}=\sqrt{5\left(x^2+x+1\right)-6}\)
đặt\(x^2+x+1=t\left(t>0\right)\)
\(\sqrt{t}+\sqrt{3t-1}=\sqrt{5t-6}\)
bình phương 2 vế pt trở thành:
\(t+3t-1+2\sqrt{t\left(3t-1\right)}=5t-6\)
\(\Leftrightarrow2\sqrt{3t^2-t}=t-5\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left(2\sqrt{3t^2-t}\right)^2=\left(t-5\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\11t^2+6t-25=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge5\\\left[{}\begin{matrix}t=\frac{-3+2\sqrt{71}}{11}\\t=\frac{-3-2\sqrt{71}}{11}\end{matrix}\right.\end{matrix}\right.\)=> không có gtri t nào t/m
vậy pt vô nghiệm
a/ ĐKXĐ: ...
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a}+\sqrt{3a-1}=\sqrt{5a-6}\)
\(\Leftrightarrow4a-1+2\sqrt{3a^2-a}=5a-6\)
\(\Leftrightarrow2\sqrt{3a^2-a}=a-5\) (\(a\ge5\))
\(\Leftrightarrow4\left(3a^2-a\right)=a^2-10a+25\)
\(\Leftrightarrow11a^2+6a-25=0\)
Nghiệm xấu quá, chắc bạn nhầm lẫn đâu đó
b/
Đặt \(x^2+x+1=a>0\)
\(\sqrt{a+3}+\sqrt{a}=\sqrt{2a+7}\)
\(\Leftrightarrow2a+3+2\sqrt{a^2+3a}=2a+7\)
\(\Leftrightarrow\sqrt{a^2+3a}=2\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\left(l\right)\end{matrix}\right.\)
\(\Rightarrow x^2+x+1=1\)
a) \(\frac{9x-0,7}{4}\)\(-\)\(\frac{5x-1,5}{7}\)=\(\frac{12x-2,1}{3}\)
⇔\(\frac{21\left(9x-0,7\right)}{84}\)\(-\)\(\frac{12\left(5x-1,5\right)}{84}\)=\(\frac{28\left(12x-2,1\right)}{84}\)
⇒189x\(-\)14,7\(-\)60x+18=336x\(-\)58,8
⇔\(-\)207x=\(-\)62,1
⇔x=\(\frac{3}{10}\)
Vậy tập nghiệm của phương trình đã cho là:S={\(\frac{3}{10}\)}
\(a)x^2-9x+20=0 \\<=>(x-4)(x-5)=0 \\<=>x=4\ hoặc\ x=5 \\b)x^2-3x-18=0 \\<=>(x+3)(x-6)=0 \\<=>x=-3\ hoặc\ x=6 \\c)2x^2-9x+9=0 \\<=>(x-3)(2x-3)=0 \\<=>x=3\ hoặc\ x=\dfrac{3}{2}\)
d: \(\Leftrightarrow3x^2-6x-2x+4=0\)
=>(x-2)(3x-2)=0
=>x=2 hoặc x=2/3
e: \(\Leftrightarrow3x\left(x^2-2x-3\right)=0\)
=>x(x-3)(x+1)=0
hay \(x\in\left\{0;3;-1\right\}\)
f: \(\Leftrightarrow x^2-5x-2+x=0\)
\(\Leftrightarrow x^2-4x-2=0\)
\(\Leftrightarrow\left(x-2\right)^2=6\)
hay \(x\in\left\{\sqrt{6}+2;-\sqrt{6}+2\right\}\)
ĐKXĐ:...
\(\sqrt{3x^2-5x-1}-\sqrt{3x^2-7x+9}+\sqrt{x^2-2}-\sqrt{x^2-3x+13}=0\)
\(\Leftrightarrow\frac{2\left(x-5\right)}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3\left(x-5\right)}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{3x^2-5x-1}+\sqrt{3x^2-7x+9}}+\frac{3}{\sqrt{x^2-2}+\sqrt{x^2-3x+13}}\right)=0\)
\(\Leftrightarrow x-5=0\) (ngoặc to phía sau luôn dương)
\(\Rightarrow x=5\)
ĐK: \(x^3+3x^2-3x+1\ge0\)
\(pt\Leftrightarrow\sqrt[3]{9x^2-15x+9}-\left(2-x\right)+\sqrt{x^3+3x^2-3x+1}=0\)
\(\Leftrightarrow\frac{9x^2-15x+9-\left(2-x\right)^3}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)
\(\left(A=\sqrt[3]{9x^2-15x+9};\text{ }B=2-x\right)\)\(\text{(}A^2+AB+B^2=\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}>0\text{)}\)
\(\Leftrightarrow\frac{x^3+3x^2-3x+1}{A^2+AB+B^2}+\sqrt{x^3+3x^2-3x+1}=0\)
\(\Leftrightarrow\sqrt{x^3+3x^2-3x+1}\left(\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1\right)=0\)
\(\Leftrightarrow x^3+3x^2-3x+1=0\text{ (do }\frac{\sqrt{x^3+3x^2-3x+1}}{A^2+AB+B^2}+1>0\text{)}\)
\(\Leftrightarrow\left(x+1+\sqrt[3]{2}+\sqrt[3]{4}\right)\left[x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1\right]=0\)
\(\Leftrightarrow x+1+\sqrt[3]{2}+\sqrt[3]{4}=0\text{ (}pt\text{ }x^2+\left(2-\sqrt[3]{2}-\sqrt[3]{4}\right)x+\sqrt[3]{2}-1=0\text{ vô nghiệm do }\Delta<0\text{ )}\)
\(\Leftrightarrow x=-1-\sqrt[3]{2}-\sqrt[3]{4}\)
\(\left(x^2-3x+9\right)\left(x^2+5x+9\right)=9x^2\)
\(\Leftrightarrow x^4+5x^3+9x^2-3x^3-15x^2-27x+9x^2+45x+81=9x^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+18x+81=9x^2\)
\(\Leftrightarrow x^4+2x^3+3x^2+18x+81-9x^2=0\)
\(\Leftrightarrow x^4+2x^2-6x^2+18x+81=0\)
\(\Leftrightarrow\left(x^3-x^2-3x+27\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x^2-4x+9\right)\left(x+3\right)\left(x+3\right)=0\)
Vì \(x^2-4x+9\ne0\) nên:
\(\Rightarrow x+3=0\)
\(x=-3\)
Vậy: nghiệm phương trình là: {-3}