Tìm x,y,z biết
\(^{^{ }x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=6}\)
x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2-2+1/x^2 ) +( y^2-2+1/y^2) +(z^2-2+1/z^2) =0
=> (x-1/x)^2 +(y-1/y)^2+(z-1/z)^2=0
suy ra x-1/x=0
y-1/y=0
z-1/z=0
.....
Ta có: \(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}=2\)
\(y^2+\frac{1}{y^2}\ge2\sqrt{y^2.\frac{1}{y^2}}=2\)
\(z^2+\frac{1}{z^2}\ge2\sqrt{x^2.\frac{1}{z^2}}=2\)
\(\Rightarrow VT\ge6\)
Dấu "=" khi \(\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y}{3}=\frac{z+2}{6}=\frac{x+1+y+z+2}{2+3+6}=\frac{\left(x+y+z\right)+\left(1+2\right)}{11}=\frac{-5+3}{11}=\frac{-2}{11}\)
=> (x+1)/2 = -2/11 => ...
...
bn tự làm tiếp nhé
\(VT=\left(x^2+\frac{1}{x^2}\right)+\left(y^2+\frac{1}{y^2}\right)+\left(z^2+\frac{1}{z^2}\right)\ge2\sqrt{\frac{x^2}{x^2}}+2\sqrt{\frac{y^2}{y^2}}+2\sqrt{\frac{z^2}{z^2}}=2+2+2=6\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=1\)
...
\(ĐK:x\ge1,y\ge2,z\ge3\)
\(PT\Leftrightarrow\sqrt{x-1}+\frac{1}{\sqrt{x-1}}+\sqrt{y-2}+\frac{1}{\sqrt{y-2}}+\sqrt{z-3}+\frac{1}{\sqrt{z-3}}=6\)
Theo bđt AM-GM thì \(VT\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x-1}=\frac{1}{\sqrt{x-1}}=1\\\sqrt{y-2}=\frac{1}{\sqrt{y-2}}=1\\\sqrt{z-3}=\frac{1}{\sqrt{z-3}}=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=4\end{cases}}\)
Áp dụng bđt Cô si
x2+\(\frac{1}{x^2}\)\(\ge\)2\(\sqrt{x^2.\frac{1}{x^2}}\)=2
y2+\(\frac{1}{y^2}\)\(\ge\)2\(\sqrt{y^2.\frac{1}{y^2}}\)=2
z2+\(\frac{1}{z^2}\)\(\ge\)2\(\sqrt{z^2.\frac{1}{z^2}}\)=2
=>x2+\(\frac{1}{x^2}\)+y2+\(\frac{1}{y^2}\)+z2+\(\frac{1}{z^2}\)\(\ge\)6
Áp dụng BĐT \(\frac{a}{b}+\frac{b}{a}\ge2\)(Dấu "="\(\Leftrightarrow a=b\ne0\))
\(x^2+\frac{1}{x^2}\ge2\)
\(y^2+\frac{1}{y^2}\ge2\)
\(z^2+\frac{1}{z^2}\ge2\)
\(\Rightarrow x^2+y^2+z^2+\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge6\)
(Dấu "="\(\Leftrightarrow\orbr{\begin{cases}x=y=z=1\\x=y=z=-1\end{cases}}\))