Cho tam giác ABC vuông tại A có AB= 8 cm, AC = 6 cm. Gọi M,N,P lần
lượt là trung điểm AB, AC, BC.
a) Tính BC, MP
b) Chứng minh MNCP là hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=10cm
DE=5cm
b: Xét ΔABC có
D là trung điểm của AB
F là trung điểm của BC
Do đó: DF là đường trung bình của ΔABC
Suy ra: DF//AC và DF=AC/2
hay DF=CE và DF//CE
Xét tứ giác DFCE có
DF//CE
DF=CE
Do đó: DFCE là hình bình hành
c: Xét tứ giác ADFE có
FD//AE
FD=AE
Do đó: ADFE là hình bình hành
mà \(\widehat{EAD}=90^0\)
nên ADFE là hình chữ nhật
Suy ra: FA=DE
a) Diện tích của tam giác ABC là:
\(S_{\Delta ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.8.6=24\) (cm2)
b) Ta có: N là trung điểm của AB
M là trung điểm của BC
=> MN là đường trung bình của tam giác ABC
\(\Rightarrow MN//AC\)
Mà \(AB\perp AC\) (vì tam giác ABC vuông tại A)
Suy ra: \(MN\perp AB\)
c) Trong tứ giác AMBP:
Hai đường chéo PM và AB cắt nhau tại trung điểm mỗi đường (NP = NM ; NB = NA)
=> Tứ giác AMBP là hình bình hành
Mà \(MN\perp AB\) (cmt) cũng đồng nghĩa với \(MN\perp PM\) (vì P là điểm đối xứng với M qua AB)
=> AMBP là hình thoi (vì hình bình hành có hai đường chéo vuông góc là hình thoi)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó:ΔABC\(\sim\)ΔHBA
\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)
b: Xét ΔAHC vuông tại H có HN là đường cao
nên \(HN^2=NA\cdot NC\)
a: Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}=6\left(cm\right)\)
a, Áp dụng PTG: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Vì M,P là trung điểm AB,BC nên MP là đtb tg ABC
\(\Rightarrow MP=\dfrac{1}{2}AC=3\left(cm\right)\)
b, Vì M,N là trung điểm AB,AC nên MN là đtb tg ABC
\(\Rightarrow MN//BC.hay.MN//CP\)
Do đó MNCP là hình thang
thanks