chung to rang tong 1+3+3^2+...+3^99 chia het cho 40
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
gọi ba số tự nhiên liên tiếp là a;a+1;a+2
ta có :
a+(a+1)+(a+2)=3.a+3=3.(a+1) chia hết cho 3
=>dpcm
2) gọi 5 số tự nhiên liên tiếp đó là a;a+1;a+2a;a+3;a+4
ta có :a+(a+1)+(a+2)+(a+3)+(a+4)=5a+10=5a+2.5=5(a+2) chia hết cho 5
=>dpcm
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Ta đã biết 1 số khi chia cho 3 chỉ có thể dư 0; 1 hoặc 2
Mà 2 số đề bài cho không chia hết cho 3 và chia 3 có số dư khác nhau
=> trong 2 số đó có 1 số chia 3 dư 1; 1 số chia 3 dư 2
Gọi 2 số đó là: 3.a + 1 và 3.b + 2
Ta có: (3.a + 1) + (3.b + 2)
= 3.a + 1 + 3.b + 2
= 3.a + 3.b + 3
= 3.(a + b + 1) chia hết cho 3
Chứng tỏ ...
B= ( 1+3+32+33)+....+(396+397+398+399)
B=(1+3+32+33)+......+396x(1+3+32+33)
B=40x1+......+396x40
B=40x(1+....+396)
Vì 40 chia hết cho 40 =)40x(1+....+396) chia hết cho 40
Hay B chia hết cho 40
Vậy B chia hết cho 40
Có : 126 chia hết cho 3, 213 chia hết cho 3
Để được M chia hết cho 3 thì x phải chia hết cho 3
Hay gọi là 3k ( k thuộc N)
2.
Hình như đầu bài bài 2 sai
= (1+ 3 + 32 + 33) +...+ (396 + 397 + 398 + 399)
= 40 + ...+ 396( 1 + 3 + 32 + 33)
= 40 +...+396. 40
= 40( 1 +...+396) : hết cho 40
nguyễn thanh hải tick nha, chtt