Trong mặt phẳng Oxy,cho hình bình hành ABCD có vectơ AC=(7;-3), vecto BD (-3;4).tìm tọa đọ của vecto AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng quy tắc hình bình hành ta có:
\(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AD}=\widehat{AC}\\\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}\end{matrix}\right.\)
Từ hệ trên suy ra:
\(\overrightarrow{2AB}=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\left(\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)
\(\Leftrightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\frac{1}{2}\left[7-\left(-3\right);-3-4\right]=\left(5;\frac{-7}{2}\right)\)
Do O là trung điểm AC \(\Rightarrow\left\{{}\begin{matrix}x_O=\frac{x_A+x_C}{2}\\y_O=\frac{y_A+y_C}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_C=-x_A=-3\\y_C=-y_A=-1\end{matrix}\right.\)
Tương tự: \(\left\{{}\begin{matrix}x_D=-x_B=-1\\y_D=-y_B=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}C\left(-3;-1\right)\\D\left(-1;-2\right)\end{matrix}\right.\)
b/ Ta có \(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow\) đường thẳng AB nhận \(\overrightarrow{n_{AB}}=\left(1;2\right)\) là 1 vtpt
Phương trình AB:
\(1\left(x-3\right)+2\left(y-1\right)=0\Leftrightarrow x+2y-5=0\)
\(\overrightarrow{DA}=\left(4;3\right)\Rightarrow\) đường thẳng AD nhận \(\overrightarrow{n}=\left(3;-4\right)\) là 1 vtpt
Phương trình AD:
\(3\left(x-3\right)-4\left(y-1\right)=0\Rightarrow3x-4y-5=0\)
Hai cạnh còn lại bạn tự viết tương tự
Cho hình vẽ
Tam giác BEC cân và có \(\widehat{BEC}=150^o\) \(\Rightarrow\) tam giác BEC cân tại E
Gọi H là hình chiếu của E lên AD \(\Rightarrow\) H là trung điểm AD và HE \(=\) d E; AD \(=\) 3
Đặt cạnh hình vuông là \(AB=x\)
Tam giác BEC cân tại E có \(\widehat{BEC}=150^o\Rightarrow\widehat{BEC}=15^o\) . Gọi I là trung điểm của \(BC\Rightarrow BI=\frac{x}{2};EI=x-3\)
Tam giác BIE vuông tại I có góc \(\widehat{EBI}=15^o\Rightarrow tan15^o=\frac{EI}{BI}=\frac{2x-6}{x}\)
\(\Rightarrow2-\sqrt{3}=\frac{2x-6}{x}\Leftrightarrow x=2\sqrt{3}\)
Phương trình đường thẳng EH qua điểm E và vuông góc với \(AD\Rightarrow EH\div4x+3y+4=0\)
Đường thằng \(AB\\ EH\Rightarrow AB\) có dạng \(''d''\div4x+3y+a=0\)
Ta có d \(''E,AB''=\frac{⊥a-4⊥}{5}=BI=\sqrt{3}\Leftrightarrow a=4⊥5\sqrt{3}\)
Phương trình đường thẳng AB là \(''d''\div4x+3y+4⊥5\sqrt{3}=0\)
P/s; Bộ khó lắm à .
Đáp án B
Gọi hình bình hành là ABCD và
d:x+ y-1 = 0, ∆: 3x – y+ 5= 0 .
Không làm mất tính tổng quát giả sử
Ta có : . Vì I(3;3) là tâm hình bình hành nên C(7;4) ;
=> Đường thẳng ACcó pt là: x- 4y + 9= 0.
Do => Đường thẳng BC đi qua điểm C và có vtpt có pt là: 3x – y- 17= 0.
Khi đó :
Ta có:
Vì ABCD là hbh nên AD//BC \(\Rightarrow\widehat{A}+\widehat{B}=180^0\Rightarrow3\widehat{B}=180^0\Rightarrow\widehat{B}=60^0\Rightarrow\widehat{A}=120^0\)
Vì ABCD là hbh nên \(\left\{{}\begin{matrix}\widehat{B}=\widehat{D}=60^0\\\widehat{A}=\widehat{C}=120^0\end{matrix}\right.\)
Vì ABCD là hình bình hành nên ˆA=ˆCA^=C^ và ˆB=ˆDB^=D^ (tính chất)
Áp dụng định lý tổng các góc trong một tứ giác ta có:
\(\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{AC}-\overrightarrow{AB}-\overrightarrow{BD}\)
\(\Rightarrow2\overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{BD}\Rightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\left(5;-\frac{7}{2}\right)\)
A,(2;1) B(-2;-1) C(-5;4) D (5;-4)