Tìm x,y,z
\(\frac{12.x-15.y}{7}\)= \(\frac{20.z-12.x}{9}\)= \(\frac{15.y-20z}{11}\)
và x+y+z = 48
giúp mk nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau
b) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k,y=9k,z=5k\)
\(xyz=20\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\)
\(\Rightarrow k^3=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
Khi \(k=\frac{1}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{1}{3}\Rightarrow x=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=\frac{5}{3}\)
Vậy x = ..... ; y = ............ ; z = .............
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
=> 12x - 15y = 0 => 12x = 15y (1) ;
15y - 20z = 0 => 15y = 20z (2)
Từ (1) => \(\frac{x}{15}=\frac{y}{12}\Rightarrow\frac{x}{75}=\frac{y}{60}\left(3\right)\)
Từ (2) => \(\frac{y}{20}=\frac{z}{15}\Rightarrow\frac{y}{60}=\frac{z}{45}\left(4\right)\)
Từ (3) và (4)
=> \(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x-y+z}{75-60+45}=\frac{20}{60}=\frac{1}{3}\)
\(\Rightarrow x=\frac{75.1}{3}=25;\)
\(y=\frac{60.1}{3}=20;\)
\(z=\frac{45.1}{3}=15\)
Vậy x = 25 ; y = 20 ; z = 15
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\)
\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
Xét:
\(\frac{15y-20z}{11}=0\Rightarrow15y-20z=0\Rightarrow15y=20z\Rightarrow\frac{y}{20}=\frac{z}{15}\)
Ta có: \(\frac{x}{15}=\frac{y}{60}=\frac{z}{45}\Leftrightarrow\frac{x}{75}=\frac{y}{60}\) và \(\frac{y}{20}=\frac{z}{15}\Leftrightarrow\frac{y}{60}=\frac{z}{45}\)
\(\Rightarrow\frac{x}{75}=\frac{y}{60}=\frac{z}{45}=\frac{x+y+z}{75+60+45}=\frac{48}{180}=\frac{4}{15}\)
Với \(\frac{x}{75}=\frac{4}{15}\Rightarrow15x=4\times75\Rightarrow15x=300\Rightarrow x=20\)
Với \(\frac{y}{60}=\frac{4}{15}\Rightarrow15y=4\times60\Rightarrow15y=240\Rightarrow y=16\)
Với \(\frac{z}{45}=\frac{4}{15}\Rightarrow15z=4\times45\Rightarrow15z=180\Rightarrow z=12\)
Theo đề ta có
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{\left(12x-15y\right)+\left(20z-12x\right)+\left(15y-20z\right)}{7+9+11}\)
\(=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
=>12x=15y =>12x=15y=20z
20z=12x
=>\(\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)
=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
=>\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
=>x=4.5=20
y=4.4=16
z=4.3=12
Giải
Áp dụng tính chất của dãy các tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15x+20z-12x+15y-20z}{7+9+11}\)\(=\frac{0}{27}=0\)
\(\Rightarrow12x=15y=20z\)
\(\Rightarrow\frac{12x}{60}=\frac{15y}{60}=\frac{20z}{60}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{4}=\frac{z}{3}\)
Lại áp dụng tính chất của dãy các tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{48}{5+4+3}=\frac{48}{12}=4\)
\(\Rightarrow\hept{\begin{cases}x=5.4=20\\y=4.4=16\\z=3.4=12\end{cases}}\)
MÌNH KO BIẾT ĐÚNG KO ĐÂU NHA
pt :15/(x-9)=20/(y-12) <=> 60/(4x-36)=60/(3y-36) : (Quy đồng mẫu)
=> 4x=3y
<=> x= 3y/4
kết hợp với xy= 1200 => x=30 hoặc x=-30 =>y =+-40
thế x hoặc y vào pt ban đàu ta có z= 80 (pt là phân tích, mìh ko bít gõ phân số nên thông cảm :D)
áp dụng t/c của dãy thỉ số bằng nhau, ta có
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=\frac{0}{27}=0\)
=>12x-15y=0 <=> 12x=15y <=> \(\frac{x}{15}=\frac{y}{12}\Rightarrow\frac{x}{60}=\frac{y}{48}\) (1)
20z-12x=0 <=> 20z=12x <=> \(\frac{x}{20}=\frac{z}{12}\Rightarrow\frac{x}{60}=\frac{z}{36}\) (2)
từ (1) và (2) => \(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}\)
áp dụng tc của dãy tỉ số bằng nhau, ta có
\(\frac{x}{60}=\frac{y}{48}=\frac{z}{36}=\frac{x+y+z}{60+48+36}=\frac{48}{144}=13\)
=> x=60:3=20
y=48:3=16
z=36:3=12
vậy ......
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)
\(\Rightarrow\hept{\begin{cases}12x=15y\\15y=20z\end{cases}\Rightarrow\hept{\begin{cases}4x=5y\\3y=4z\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{5}=\frac{y}{4}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Rightarrow}\frac{x}{5}=\frac{y}{4}=\frac{z}{3}}\)
Áp dụng tinh chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{5+4+3}=\frac{48}{12}=4\)
\(\Rightarrow\hept{\begin{cases}x=20\\y=16\\z=12\end{cases}}\)