tìm x thuộc N để \(A=\frac{\sqrt{x+1}}{\sqrt{x-2}}\)là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}.\)
\(=\frac{\sqrt{x}\left(\sqrt{x}^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}\)\(+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)\(-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=x-\sqrt{x}+1\)
Để A thuộc Z
=> A^2 thuộc Z
=> x-3+4/x-3 = 1+4/x-3 thuộc z
=> x-3 thuộc ước của 4 Giải ra
\(A=\frac{\sqrt{x+1}}{\sqrt{x-3}}\Leftrightarrow A^2=\frac{x+1}{x-3}.\)
\(\Leftrightarrow A^2=\frac{x-3+4}{x-3}=\frac{x-3}{x-3}+\frac{4}{x-3}=1+\frac{4}{x-3}\)
Để \(A\in Z\Leftrightarrow1+\frac{4}{x-3}\in Z\).
Mà \(1\in Z\)
\(\Leftrightarrow\frac{4}{x-3}\in Z\)
\(\Leftrightarrow\left(x-3\right)\inƯ_4=\left\{\pm2;\pm4;\pm1\right\}\)
Ta có bảng sau :
x-3 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 7 | -1 | 5 | 1 | 4 | 2 |
\(A=\frac{\sqrt{x}-6}{\sqrt{x}+1}=\frac{\sqrt{x}+1-7}{\sqrt{x}+1}=1-\frac{7}{\sqrt{x}+1}\)
Để A nguyên thì \(\frac{7}{\sqrt{x}+1}\) nguyên hay \(\sqrt{x}+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng sau:
\(\sqrt{x}+1\) | -7 | -1 | 1 | 7 |
\(\sqrt{x}\) | -8 (loại) | -2(loại) | 0 | 6 |
\(x\) | ___ | __ | 0 | 36 |
Vậy ....