Giải pt nghiệm nguyên: x(x2++1)=4y-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x(x^2+x+1)=4y(y+1)$
$\Leftrightarrow x(x^2+x+1)+1=4y(y+1)+1$
$\Leftrightarrow (x^2+1)(x+1)=(2y+1)^2$
Vì $(x^2+1)-(x+1)=x^2-x=x(x-1)\vdots 2$ nên $x^2+1, x+1$ cùng tính chẵn lẻ. Mà tích của chúng là $(2y+1)^2$ lẻ nên $x^2+1, x+1$ cùng lẻ.
Gọi $d=ƯCLN(x^2+1, x+1)$
$\Rightarrow x^2+1\vdots d; x+1\vdots d$
$\Rightarrow x(x+1)-(x^2+1)\vdots d$
$\Rightarrow x-1\vdots d$
$\Rightarrow (x+1)-(x-1)\vdots d\Rightarrow 2\vdots d$
$\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $x^2+1\vdots 2$ (loại do $x^2+1$ lẻ)
$\Rightarrow d=1$
Vậy $(x^2+1, x+1)=1$. Mà tích của chúng là scp nên bản thân mỗi số $x^2+1, x+1$ là scp.
Đặt $x^2+1=a^2, x+1=b^2$ với $a,b\in\mathbb{N}$
$\Rightarrow (b^2-1)^2+1=a^2$
$\Rightarrow 1=(a^2-b^2+1)(a^2+b^2-1)$
$\Rightarrow a^2-b^2+1=1=a^2+b^2-1=1$
$\Rightarrow a=b=1$
$\Rightarrow x=0\Rightarrow y=0$ hoặc $y=-1$
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
Bài 4:
\(x^4y-x^4+2x^3-2x^2+2x-y=1\)
\(\Leftrightarrow y(x^4-1)-(x^4-2x^3+2x^2-2x+1)=0\)
\(\Leftrightarrow y(x^2+1)(x^2-1)-[x^2(x^2-2x+1)+(x^2-2x+1)]=0\)
\(\Leftrightarrow y(x^2+1)(x-1)(x+1)-(x-1)^2(x^2+1)=0\)
\(\Leftrightarrow (x^2+1)(x-1)[y(x+1)-(x-1)]=0\)
\(\Rightarrow \left[\begin{matrix} x-1=0(1)\\ y(x+1)-(x-1)=0(2)\end{matrix}\right.\)
Với $(1)$ ta thu được $x=1$, và mọi $ý$ nguyên.
Với $(2)$
\(y(x+1)=x-1\Rightarrow y=\frac{x-1}{x+1}\in\mathbb{Z}\)
\(\Rightarrow x-1\vdots x+1\)
\(\Rightarrow x+1-2\vdots x+1\Rightarrow 2\vdots x+1\)
\(\Rightarrow x+1\in\left\{\pm 1; \pm 2\right\}\Rightarrow x\in\left\{-2; 0; -3; 1\right\}\)
\(\Rightarrow y\left\{3;-1; 2; 0\right\}\)
Vậy \((x,y)=(-2,3); (0; -1); (-3; 2); (1; t)\) với $t$ nào đó nguyên.
Bài 1:
\(x^2+y^2-8x+3y=-18\)
\(\Leftrightarrow x^2+y^2-8x+3y+18=0\)
\(\Leftrightarrow (x^2-8x+16)+(y^2+3y+\frac{9}{4})=\frac{1}{4}\)
\(\Leftrightarrow (x-4)^2+(y+\frac{3}{2})^2=\frac{1}{4}\)
\(\Rightarrow (x-4)^2=\frac{1}{4}-(y+\frac{3}{2})^2\leq \frac{1}{4}<1\)
\(\Rightarrow -1< x-4< 1\Rightarrow 3< x< 5\)
Vì \(x\in\mathbb{Z}\Rightarrow x=4\)
Thay vào pt ban đầu ta thu được \(y=-1\) or \(y=-2\)
Vậy.......
a.Bạn thế vào nhé
b.\(\Delta=3^2-4m=9-4m\)
Để pt vô nghiệm thì \(\Delta< 0\)
\(\Leftrightarrow9-4m< 0\Leftrightarrow m>\dfrac{9}{4}\)
c.Ta có: \(x_1=-1\)
\(\Rightarrow x_2=-\dfrac{c}{a}=-m\)
d.Theo hệ thức Vi-ét, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1.x_2=m\end{matrix}\right.\)
1/ \(x_1^2+x_2^2=34\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=34\)
\(\Leftrightarrow\left(-3\right)^2-2m=34\)
\(\Leftrightarrow m=-12,5\)
..... ( Các bài kia tương tự bạn nhé )
Bài 2:
a: \(x^2-4x+3=0\)
=>x=1 hoặc x=3
\(x_1^2+x_2^2=1^2+3^2=10\)
b: \(\dfrac{1}{x_1+2}+\dfrac{1}{x_2+2}=\dfrac{1}{1}+\dfrac{1}{5}=\dfrac{6}{5}\)
c: \(x_1^3+x_2^3=1^3+3^3=28\)
d: \(x_1-x_2=1-3=-2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-8\end{matrix}\right.\)
\(M=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1+x_2-2x_1x_2\)
\(=-2-2.\left(-8\right)=14\)