K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

20 tháng 3 2016

a) Phương trình hoành độ giao điểm f(x) =  X- x - 2 =0 ⇔ x = -1 hoặc x = 2.

Diện tích hình phẳng cần tìm là :

    

    

b) Phương trình hoành độ giao điểm: 

f(x) = 1 - ln|x| = 0  ⇔ lnx = ± 1

⇔ x = e hoặc                                                       

        y = ln|x| = lnx nếu lnx ≥ 0 tức là x ≥ 1.

 hoặc  y = ln|x| = - lnx nếu x < 0, tức là 0 < x < 1.

Dựa vào đồ thị hàm số vẽ ở hình trên ta có diện tích cần tìm là :  

    

     

     

Ta có  ∫lnxdx = xlnx - ∫dx = xlnx  –  x  + C,  thay vào trên ta được  :

 

    

c) Phương trình hoành độ giao điểm là:

f(x) = 6x  –  x2 – (x - 6)2  = -2(x2 – 9x +18)

f(x) = 0 ⇔ -2(x2 – 9x +18) ⇔ x = 3 hoặc x = 6.

Diện tích cần tìm là:

    

   


 

25 tháng 2 2017

Ths

21 tháng 1 2021

a) Phương trình hoành độ giao điểm f(x) =  X- x - 2 =0 ⇔ x = -1 hoặc x = 2.

Diện tích hình phẳng cần tìm là :

    

    

b) Phương trình hoành độ giao điểm: 

f(x) = 1 - ln|x| = 0  ⇔ lnx = ± 1

⇔ x = e hoặc                                                       

        y = ln|x| = lnx nếu lnx ≥ 0 tức là x ≥ 1.

 hoặc  y = ln|x| = - lnx nếu x < 0, tức là 0 < x < 1.

Dựa vào đồ thị hàm số vẽ ở hình trên ta có diện tích cần tìm là :  

    

     

     

Ta có  ∫lnxdx = xlnx - ∫dx = xlnx  –  x  + C,  thay vào trên ta được  :

 

    

c) Phương trình hoành độ giao điểm là:

f(x) = 6x  –  x2 – (x - 6)2  = -2(x2 – 9x +18)

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

1.

\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)

\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)

\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\) 

 

AH
Akai Haruma
Giáo viên
10 tháng 10 2021

2.

\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)

\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)

\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)

\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)

 

 

12 tháng 12 2017

Chọn đáp án C

Phương trình hoành độ giao điểm của đồ thị  y = x 2 - 2 x  và y = 0 là

STUDY TIP

Khi sử dụng MTCT tính tích phân mà không chia khoảng thì có sự sai khác về kết quả giữa các loại máy tính

12 tháng 7 2017

Đáp án C

9 tháng 6 2019

Chọn A 

Phương trình hoành độ giao điểm:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

24 tháng 5 2017

Nguyên hàm, tích phân và ứng dụng

11 tháng 1 2018

Đáp án B.