K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2020

biến đổi tương đương thôi , EZ !

\(BĐT< =>\frac{a\left(c+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}+\frac{b\left(a+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}+\frac{c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

\(< =>\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)

\(< =>\frac{ab+bc+ca+a+b+c}{ab+bc+ca+a+b+c+1+abc}\ge\frac{3}{4}\)

\(< =>4\left(ab+bc+ca+a+b+c\right)\ge3\left(ab+bc+ca+a+b+c\right)+6\)

\(< =>ab+bc+ca+a+b+c\ge6\)

Theo đánh giá của Bất đẳng thức Cauchy thì :

\(ab+bc+ca\ge3\sqrt[3]{abbcca}=3\sqrt[3]{a^2b^2c^2}\)

\(a+b+c\ge3\sqrt[3]{abc}\)

Vậy Bất đẳng thức được hoàn tất chứng minh 

Đẳng thức xảy ra khi và chỉ khi \(a=b=c\)

NV
5 tháng 10 2021

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)

Sửa đề: 1+a^2;1+b^2;1+c^2

\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)

\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)

=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)

NV
5 tháng 8 2021

\(abc=1\) nên tồn tại các số dương x;y;z sao cho \(\left(a;b;c\right)=\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\)

BĐT cần chứng minh tương đương:

\(\dfrac{y}{x+2y}+\dfrac{z}{y+2z}+\dfrac{x}{z+2x}\le1\)

\(\Leftrightarrow\dfrac{2y}{x+2y}-1+\dfrac{2z}{y+2z}-1+\dfrac{2x}{z+2x}-1\le2-3\)

\(\Leftrightarrow\dfrac{x}{x+2y}+\dfrac{y}{y+2z}+\dfrac{z}{z+2x}\ge1\)

Điều này đúng do:

\(VT=\dfrac{x^2}{x^2+2xy}+\dfrac{y^2}{y^2+2yz}+\dfrac{z^2}{z^2+2xz}\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)

5 tháng 8 2021

e cảm ơn ạ

 

NV
4 tháng 10 2021

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(a-1\right)\left(bc-b-c+1\right)\)

\(=abc-\left(ab+bc+ca\right)+a+b+c-1\)

\(=abc-abc+1-1=0\) (đpcm)

NV
17 tháng 4 2021

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có ít nhất 2 số cùng phía so với 1

Không mất tính tổng quát, giả sử đó là a và b

\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)

\(\Leftrightarrow ab+1\ge a+b\)

\(\Leftrightarrow2\left(ab+1\right)\ge\left(a+1\right)\left(b+1\right)\)

\(\Rightarrow\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\dfrac{2}{2\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(ab+1\right)\left(c+1\right)}=\dfrac{1}{\left(\dfrac{1}{c}+1\right)\left(c+1\right)}=\dfrac{c}{\left(c+1\right)^2}\)

Lại có:

\(\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{a}{b}}+1.1\right)^2}+\dfrac{1}{\left(\sqrt{ab}.\sqrt{\dfrac{b}{a}}+1\right)^2}\ge\dfrac{1}{\left(ab+1\right)\left(\dfrac{a}{b}+1\right)}+\dfrac{1}{\left(ab+1\right)\left(\dfrac{b}{a}+1\right)}=\dfrac{1}{ab+1}\)

\(\Rightarrow P\ge\dfrac{1}{ab+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}=\dfrac{1}{\dfrac{1}{c}+1}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{c}{\left(c+1\right)^2}\)

\(\Rightarrow P\ge\dfrac{c}{c+1}+\dfrac{c+1}{\left(c+1\right)^2}=\dfrac{c\left(c+1\right)+c+1}{\left(c+1\right)^2}=\dfrac{\left(c+1\right)^2}{\left(c+1\right)^2}=1\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

17 tháng 4 2021

Em cảm ơn ạ

29 tháng 5 2022

\(Áp\ dụng\ BĐT\ AM - GM,\ ta\ có: \\\sum\dfrac{1}{a^2+2b^2+3}=\sum\dfrac{1}{(a^2+b^2)+(b^2+1)+2}\le\sum\dfrac{1}{2ab+2b+2} \\=\dfrac{1}{2}\sum\dfrac{1}{ab+b+1}=\dfrac{1}{2}.1=\dfrac{1}{2} \\Đẳng\ thức\ xảy\ ra\ khi\ a=b=c=1.\)

21 tháng 2 2023

31 tháng 5 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ca=0\)

Mà \(\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Rightarrow a^2+b^2+c^2=0\)

Ta lại có:

\(\frac{a^6+b^6+c^6}{a^3+b^3+c^3}=\frac{\left(a^6+b^6+c^6-3a^2b^2c^2\right)+3a^2b^2c^2}{\left(a^3+b^3+c^3-3abc\right)+3abc}\)

\(=\frac{\left(a^2+b^2+c^2\right)\left(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\right)+3a^2b^2c^2}{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}\)

\(=\frac{3a^2b^2c^2}{3abc}=abc\)

17 tháng 7 2021

áp dụng BĐT Bunhiacopxky

\(=>\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)

\(=>3\left(a^2+b^2+c^2\right)\ge1^2\)

\(=>a^2+b^2+c^2\ge\dfrac{1}{3}\left(đpcm\right)\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{1}{3}\)