Tính góc B và C của tấm giác ABC biết
a) A=70°, B-C=10°
b) A=60°, B=2C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
) Ta có : ˆA+ˆB+ˆC=1800A^+B^+C^=1800(định lí)
=> 600+ˆB+ˆC=1800600+B^+C^=1800
=> ˆB+ˆC=1200B^+C^=1200
Mà ˆB=2ˆCB^=2C^
=> 2ˆC+ˆC=12002C^+C^=1200
=> 3ˆC=12003C^=1200
=> ˆC=400C^=400
Lại có ˆB=2ˆCB^=2C^,thay ˆC=400C^=400=> ˆB=2⋅400=80
a) Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(tổng 3 góc trong 1\(\Delta\))
=> \(70^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=110^0\)(1)
Mà : \(\widehat{B}-\widehat{C}=10^0\)(2)
Từ (1) và (2)
=> \(2\widehat{B}=120^0\)
=> \(\widehat{B}=60^0\)
Vậy \(\widehat{B}=60^0,\widehat{C}=50^0\)
b) Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí)
=> \(100^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=80^0\)(1)
Mà \(\widehat{B}-\widehat{C}=50^0\)(2)
Từ (1) và (2) => \(2\widehat{B}=130^0\)
=> \(\widehat{B}=65^0\)
Vậy \(\widehat{B}=65^0,\widehat{C}=65^0-50^0=15^0\)
c) Ta có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(định lí)
=> \(60^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=120^0\)
Mà \(\widehat{B}=2\widehat{C}\)
=> \(2\widehat{C}+\widehat{C}=120^0\)
=> \(3\widehat{C}=120^0\)
=> \(\widehat{C}=40^0\)
Lại có \(\widehat{B}=2\widehat{C}\),thay \(\widehat{C}=40^0\)=> \(\widehat{B}=2\cdot40^0=80^0\)
a) Ta có: \(\widehat{B}+\widehat{C}=90^o\Rightarrow\widehat{B}=90^o-\widehat{C}=90^o-30^o=60^o\)
Mà: \(sinB=sin60^o=\dfrac{AC}{BC}\Rightarrow AC=sin60^o\cdot BC=\dfrac{\sqrt{3}}{2}\cdot8=4\sqrt{3}\left(cm\right)\)
Áp dụng định lý Py-ta-go ta có:
\(AB=\sqrt{BC^2-AC^2}=\sqrt{8^2-\left(4\sqrt{3}\right)^2}=4\left(cm\right)\)
b) Ta có:
\(cosB=cos60^o=\dfrac{AB}{BC}\Rightarrow BC=\dfrac{AB}{cos60^o}=\dfrac{10}{cos60^o}=\dfrac{10}{\dfrac{1}{2}}=20\left(cm\right)\)
Áp dụng định lý Py-ta-go ta có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-10^2}=10\sqrt{3}\left(cm\right)\)
a,b:
Tam giác ABC có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lí tổng 3 góc 1 tam giác)
=> \(70^0+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=110^0\)
MÀ \(\widehat{B}-\widehat{C}=10^0\)
=> \(\widehat{B}=\left(110^0+10^0\right):2=60^0\)
\(\Rightarrow\widehat{C}=60^0-10^0=50^0\)
c, do \(\widehat{A}=60^0\)nên \(\widehat{B}+\widehat{C}=120^0\)
Mặt khác: \(\widehat{B}=2\widehat{C}\)
\(\Rightarrow\widehat{B}+\widehat{C}=2\widehat{C}+\widehat{C}\)
\(\Rightarrow120^0=3\widehat{C}\)
\(\Rightarrow\widehat{C}=40^0\)
\(\Rightarrow\widehat{B}=120^0-40^0=80^0\)
a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)
=>\(\widehat{A}\simeq50^0\)
b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)
=>\(25+64-BC^2=40\)
=>\(BC^2=49\)
=>BC=7
a, tổng cùa 3 góc A;B;C : 180
=> B + C = 180 - 70 = 110
=> B = (110 + 10) : 2 = 60
=> C = 60 - 10 = 150
b, góc B + C = 180 - 60 = 120
=> B = 120 : (2 + 1) X 2= 80
=> C = 80 : 2 = 40
Xét tam giác ABC có : \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) ( định lí 3 góc trong tam giác)
=> \(70^0+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=180^0-70^0=110^0\)
Ta có \(\widehat{B}+\widehat{C}+\widehat{B}-\widehat{C}=110^0+10^0\)
=> \(2\widehat{B}=120^0\)
=> \(\widehat{B}=60^0\)=> \(\widehat{C}=50^0\)
b) Xét tam giác ABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{B}+\widehat{C}=120^0\) mà \(\widehat{B}=2\widehat{C}\)
=>\(2\widehat{C}+\widehat{C}=120^0\)
=> \(3\widehat{C}=120^0\)
=> \(\widehat{C}=40^0\)
=> \(\widehat{B=80^0}\)