K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

\(2mx+3=m-x\)

\(\Leftrightarrow x\left(2m+1\right)=m-3\)

+) Nếu \(2m+1=0\)\(m-3=0\) thì phương trình nghiệm đúng \(\forall x\)

Khi đó \(m=-\frac{1}{2}\)\(m=3\) (vô lí)

+) Nếu \(2m+1=0\)\(m-3\ne0\) thì phương trình vô nghiệm

Khi đó:\(m=-\frac{1}{2}\)\(m\ne3\) (chọn) +) Nếu \(2m+1\ne0\)\(m-3\ne0\) thì phương trình có nghiệm duy nhất \(x=\frac{m-3}{2m+1}\) Khi đó \(m\ne3\)\(m\ne-\frac{1}{2}\)

b: Để phương trình vô nghiệm thì x-2=0

hay x=2

Để phương trình có nghiệm thì x-2<>0

hay x<>2

29 tháng 11 2019

Phương trình đã cho tương đương với phương trình

    (m - 1)(m + 3)x = 4(m - 1)

    Với m ≠ 1 và m ≠ -3 phương trình có nghiệm Giải sách bài tập Toán 10 | Giải sbt Toán 10

    Với m = 1 mọi số thực x đều là nghiệm của phương trình;

    Với m = -3 phương trình vô nghiệm.

28 tháng 5 2018

Với Giải sách bài tập Toán 10 | Giải sbt Toán 10 phương trình đã cho trở thành

    3x + 2m = x - m ⇔ 2x = -3m ⇔ x = -3m / 2

 Ta có:

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Với Giải sách bài tập Toán 10 | Giải sbt Toán 10 Phương trình đã cho trở thành

    -3x - 2m = x - m ⇔ 4x = -m ⇔ x = -m / 4

    Ta có:

  Giải sách bài tập Toán 10 | Giải sbt Toán 10

Kết luận

    Với m > 0 phương trình vô nghiệm;

    Với m = 0 phương trình có nghiệm x = 0;

    Với m < 0 phương trình có nghiệm

Giải sách bài tập Toán 10 | Giải sbt Toán 10

8 tháng 2 2019

Giải sách bài tập Toán 10 | Giải sbt Toán 10

Phương trình (1) ⇔ x = -3m + 2

    Phương trình (2) ⇔ 3x = m - 2 ⇔ x = (m - 2) / 3

    Vậy với mọi giá trị của m phương trình có nghiệm là:

     x 1  = -3m + 2 và x 2  = (m - 2) / 3

21 tháng 9 2017

m(x – 2) = 3x + 1

⇔ mx – 2m = 3x + 1

⇔ mx – 3x = 1 + 2m

⇔ (m – 3).x = 1 + 2m (1)

     + Xét m – 3 ≠ 0 ⇔ m ≠ 3, phương trình (1) có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

     + Xét m – 3 = 0 ⇔ m = 3, pt (1) ⇔ 0x = 7. Phương trình vô nghiệm.

Kết luận:

+ với m = 3, phương trình vô nghiệm

+ với m ≠ 3, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

2mx+y=2 và 8x+my=m+2

=>y=2-2mx và 8x+m(2-2mx)=m+2

=>\(\left\{{}\begin{matrix}8x+2m-2m^2x-m-2=0\\y=-2mx+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(-2m^2+8\right)=-m+2\\y=-2mx+2\end{matrix}\right.\)

=>2(m-2)(m+2)x=m-2 và y=-2mx+2

Nếu m=2 thì hệpt có vô số nghiệm

Nếu m=-2 thìhệ pt vn

Nếu m<>2; m<>-2 thì hệ phương trình có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}x=\dfrac{1}{2\left(m+2\right)}\\y=-2m\cdot\dfrac{1}{2\left(m+2\right)}+2=-\dfrac{m}{m+2}+2=\dfrac{-m+2m+4}{m+2}=\dfrac{m+4}{m+2}\end{matrix}\right.\)

23 tháng 1 2017

m = 0 phương trình trở thành

    -x - 2 = 0 ⇒ x = -2

    m ≠ 0 phương trình đã cho là phương trình bậc hai, có Δ = 4m + 1

    Với m < -1/4 phương trình vô nghiệm;

    Với m ≥ -1/4 nghiệm của phương trình là

Giải sách bài tập Toán 10 | Giải sbt Toán 10