\(\sqrt{9x^2-42x+49}-1=3\sqrt{x^2-6x+6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ĐKXĐ: \(\left[{}\begin{matrix}x\ge3+\sqrt{3}\\x\le3-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\sqrt{\left(3x-7\right)^2}-1=3\sqrt{x^2-6x+6}\)
\(\Leftrightarrow\left|3x-7\right|-1=3\sqrt{x^2-6x+6}\)
- Với \(x\ge3+\sqrt{3}\):
\(\Leftrightarrow3x-8=3\sqrt{x^2-6x+6}\)
\(\Leftrightarrow9x^2-48x+64=9\left(x^2-6x+6\right)\)
\(\Rightarrow x=-\frac{10}{3}\left(l\right)\)
- Với \(x\le3-\sqrt{3}\)
\(\Leftrightarrow2-x=\sqrt{x^2-6x+6}\)
\(\Leftrightarrow x^2-4x+4=x^2-6x+6\Rightarrow x=1\)

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290

a)\(\sqrt{3x+2}=2-\sqrt{3}\)
\(\Leftrightarrow3x+2=\left(2-\sqrt{3}\right)^2\)
\(\Leftrightarrow3x+2=7-4\sqrt{3}\)
\(\Leftrightarrow3x=7-2-4\sqrt{3}\)
\(\Leftrightarrow3x=5-4\sqrt{3}\)
\(\Leftrightarrow x=\dfrac{5}{3}-\dfrac{4\sqrt{3}}{3}\)
\(\Leftrightarrow x=\dfrac{5-4\sqrt{3}}{3}\)
b) \(\sqrt{x^2-4x+4}=49\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=49\)
\(\Leftrightarrow\left|x-2\right|=49\)\
\(\Leftrightarrow\left[{}\begin{matrix}x-2=49\\-x+2=49\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=51\\x=-47\end{matrix}\right.\)
c) \(\sqrt{x+1}=x-1\)
ĐKXĐ: \(x-1\ge0\Rightarrow x\ge1\)
\(\Leftrightarrow x+1=\left(x-1\right)^2\)
\(\Leftrightarrow x+1=x^2-2x+1\)
\(\Leftrightarrow-x^2+2x+x=-1+1\)
\(\Leftrightarrow3x-x^2=0\)
\(\Leftrightarrow x\left(3-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\x=3\left(nh\text{ậ}n\right)\end{matrix}\right.\)
d)e) lát mình làm sau

b: Ta có: \(\sqrt{x^2-6x+9}-\dfrac{\sqrt{6}+\sqrt{3}}{\sqrt{2}+1}=0\)
\(\Leftrightarrow x^2-6x+9=3\)
\(\Leftrightarrow x^2-6x+6=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot1\cdot6=36-24=12\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{6-2\sqrt{3}}{2}=3-\sqrt{3}\\x_2=3+\sqrt{3}\end{matrix}\right.\)
\(ĐKXĐ:\orbr{\begin{cases}x\ge3+\sqrt{3}\\x\le3-\sqrt{3}\end{cases}}\)
\(\Leftrightarrow\sqrt{\left(3x-7\right)^2}-1=3\sqrt{x^2-6x+6}\)
\(\Leftrightarrow\left|3x-7\right|-1=3\sqrt{x^2-6x+6}\)
- Với \(x\ge3+\sqrt{3}\)
\(\Leftrightarrow3x-8=3\sqrt{x^2-6x+6}\)
\(\Leftrightarrow9x^2-48x+64=9\left(x^2-6x+6\right)\)
\(\Rightarrow x=-\frac{10}{3}\left(l\right)\)
- Với \(x\le3-\sqrt{3}\)
\(\Leftrightarrow2-x=\sqrt{x^2-6x+6}\)
\(\Leftrightarrow x^2-4x+4=x^2-6x+6\)
\(\Rightarrow x=1\) ( t/m)
Chúc bạn học tốt !!!