K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2017
bài toán này cũng dễ mà,nó ra là ... thôi bạn tự là đ
6 tháng 11 2017

Diễn giải:

- Khi cộng, trừ số thập phân ta tiến hành cộng hoặc trừ các phần tương ứng của các số đó.

Ví dụ 1:

Tính 0,25 + 2,5 ta làm như sau: 5 + 0 = 5 , 2 + 5 =7, 0 + 2 = 2. Vậy 0,25 + 2,5 = 2.75

Tính 8,6 - 2,7 ta làm như sau: 6 - 7 không trừ được ta lấy 16 - 7 = 9, tiếp tục 8 - 2 trừ thêm 1 nữa tức là 8 -3 = 5. Vậy 8,6 - 2,7 = 5,9

- Với phép nhân, chia các số thập phân ta cần viết chúng dưới dạng phân số.

30 tháng 1 2019

 cau a phai la tamgiac HBA = tamgiac AMD phai k 

phai thi tu ve hinh :

a, DM | IH (GT) va AH | BH (GT)  ma 2 duong thang DM; BH phan biet 

=> DM // BH (dl)

=> goc MDB + DBH = 180o (tcp)

co tamgiac ADB vuong can tai A do  goc A = 90o (gt) va AD = AB (gt)   

=> goc MDA + goc ABH = 90o  

ma goc MDA + goc DAM = 90o (tc) do tamgiac DMA vuong tai M do DM | IA (gt)

=> goc MAD = goc ABH 

xet tamgiac AMD va tamgiac BHA co : goc DMA = goc ANB = 90o va AD = AB (GT)

=>  tamgiac AMD = tamgiac BHA (ch - gn)

a: XétΔCAI vuông tại A và ΔCHI vuông tại H có

CI chung

\(\widehat{ACI}=\widehat{HCI}\)

Do đó: ΔCAI=ΔCHI

Suy ra: CA=CH

b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có 

CA=CH

\(\widehat{ACB}\) chung

DO đó: ΔABC=ΔHKC

c: Ta có: ΔCKB cân tại C

mà CN là đường phân giác

nên CN là đường cao

a: XétΔCAI vuông tại A và ΔCHI vuông tại H có

CI chung

\(\widehat{ACI}=\widehat{HCI}\)

Do đó: ΔCAI=ΔCHI

Suy ra: CA=CH

b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có 

CA=CH

\(\widehat{ACB}\) chung

DO đó: ΔABC=ΔHKC

c: Ta có: ΔCKB cân tại C

mà CN là đường phân giác

nên CN là đường cao

5 tháng 1 2018

1.Vì các tia phân giác của các góc B và C cắt nhau tại I

\(\Rightarrow\)I là giao của các đường phân giác trong tam giác

\(\Rightarrow\)AI là tia phân giác của góc A

20 tháng 6 2019

1.

Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)

\(\widehat{IDB}=\widehat{IEB}=90^0\)

\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)

BI cạnh huyền chung

⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\widehat{IEC}=\widehat{IFC}=90^0\)

\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

         \(\widehat{IDA}=\widehat{IFA}=90^0\)

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)

Vậy AI là tia phân giác của \(\widehat{A}\)

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )a,chứng minh rằng IA=IBb, Tính độ dài ICc, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IKBài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AEa, chứng minh rằng BE=CDb, chứng minh rằng góc ABE bằng góc ACDc, Gọi K là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC có CA = CB = 10 cm AB = 12 cm. Kẻ CI vuông góc với AB (I thuộc AB )

a,chứng minh rằng IA=IB

b, Tính độ dài IC

c, Kẻ IH vuông với AC (H thuộc AC) kẻ IK vuông góc với BC (K thuộc BC).So sánh các độ dài IH và IK

Bài 2: cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E sao cho AD=AE

a, chứng minh rằng BE=CD

b, chứng minh rằng góc ABE bằng góc ACD

c, Gọi K là giao điểm của BE và CD. Tam giác KBC là tam giác gì? Vì sao?

Bài 3: Cho tam giác ABC vuông ở C, có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E kẻ CK vuông góc với AB (K thuộc AB) kẻ BD vuông góc với tia AE (D thuộc tia AE)chứng minh:

a, AC=AK và AE vuông góc CK

b,KB=KA

c, EB > AC

d, ba đường AC,BD,KE cùng đi qua 1 điểm

Bài 4: Cho tam giác nhọn ABC vẽ ra phía ngoài tam giác ABC các tam giác đều ABD và ACE .Gọi M là giao điểm của DC và BE Chứng minh rằng:

a, tam giác ABE=tam giác ADC

b,góc BMC=120°

Bài 5: Cho tam giác ABC vuông ở C ,có góc A bằng 60 độ tia phân giác của góc BAC cắt BC ở E,kẻ EK vuông góc với AB( K thuộc AB)kẻ BD vuông góc với AE (D thuộc AE) chứng minh

a,AK=KB

b, AD=BC

2
12 tháng 5 2019

C1 :

Hình : tự vẽ 

a )Vì CA=CB ( đề bài cho ) => tam giác ABC cân tại C

                                       mà CI vuông góc vs AB => CI là đường cao của tam giác ABC 

=> CI cũng là đường trung tuyến của tam giác ABC ( t/c tam giác cân )

=> IA=IB (đpcm)

12 tháng 5 2019

C1 : 

b) Có IA=IB ( cm phần a ) 

mà IA+IB = AB 

      IA + IA = 12 (cm)

=> IA = \(\frac{12}{2}=6\left(cm\right)\)

Xét tam giác vuông CIA có :     CI2  +   IA2  = CA2  ( Đ/l Py-ta -go )

                                                   CI2 +  62     = 102

                                                          CI2       = 102  - 6= 64

=> CI = \(\sqrt{64}=8\left(cm\right)\)

Vậy CI ( hay IC ) = 8cm