K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2016

Cac thua so trong A deu nho hon hoac bang 1/130

=>(1/3)+(1/3)+(1/3)+(1/3)+(1/3)+(1/3)+(1/3)+(1/130)+(1/130)+...+(1/130)(121 p/s 1/130)<A

7*(1/3)+121*(1/130)<A

647/195<A

3*(62/195)<A

=>A>3

25 tháng 2 2017

2.a) Vào question 126036

b) Vào question 68660

3 tháng 8 2018

Đc lém Min đúng lúc tui đang định đăng câu ó

3 tháng 8 2018

\(Ta\)  \(có\)  \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{256}\)

                   \(Vì\)  \(1>\frac{1}{256},\frac{1}{2}>\frac{1}{256},....,\frac{1}{255}>\frac{1}{256},\frac{1}{256}=\frac{1}{256}\)

                 \(\Rightarrow1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{256}>\frac{1}{256}+\frac{1}{256}+...+\frac{1}{256}\)

                  \(=\frac{1}{256}.256=1\)\(< 5\)

5 tháng 7 2019

\(\frac{1}{M}=\frac{1}{\frac{3.4}{2}}+\frac{1}{\frac{4.5}{2}}+...+\frac{1}{\frac{59.60}{2}}\)

\(\frac{1}{M}=\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{59.60}\)

\(\frac{1}{M}=2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{59}-\frac{1}{60}\right)\)

\(\frac{1}{M}=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)

-theo t đề là M chứ ko phải 1/M 

13 tháng 4 2017

Ta có: H=(1/2+1/3+1/4)+(1/5+...+1/8)+(1/9+1/16)+(1/17+...+1/63)

=> H=13/12 + (1/5+...+1/8)+(1/9+...+1/16)+(1/17+...+1/63)

=> H> 1 + 4x(1/8) + 8x (1/16) + (1/17+...+1/63)

=> H> 1+ 1/2 + 1/2 + (1/17+...+1/63)

=> H> 1+1+(1/17+...+1/63)

=> H>1+1

=> H>2

5 tháng 2 2018

Bài này dễ,ông không chịu làm thì có ^_^:

Ta có:\(B=1+\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+....+\left(\frac{1}{2^{2014}+1}+....+\frac{1}{2^{2015}}\right)+\frac{1}{2^{2015}+1}+...+\frac{1}{2^{2016}-1}\)

\(>1+\frac{1}{2}+2.\frac{1}{2^2}+2^2.\frac{1}{2^3}+........+2^{2014}.\frac{1}{2^{2015}}\)

\(=1+\frac{1}{2}+\frac{1}{2}+.........+\frac{1}{2}\)  (có 2015 phân số  \(\frac{1}{2}\))

\(=1+2014.\frac{1}{2}+\frac{1}{2}=1008+\frac{1}{2}>1008\)

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>\frac{1}{15}+\frac{1}{15}+\frac{1}{15}+...+\frac{1}{15}\)

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>\frac{1\cdot30}{15}\)

\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{32}>2\)