K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2019

\(\left|5+x\right|=3x+1\)

\(\left|5+x\right|=5+x\)khi \(5+x>0\Leftrightarrow x< -5\)

\(\left|5+x\right|=-\left(5+x\right)\)khi \(5+x\le0\Leftrightarrow x\le-5\)

Với x < - 5 ta có:

\(pt\Leftrightarrow5+x=3x+1\Leftrightarrow-2x=-4\Leftrightarrow x=2\) (thoả mãn)

Với: \(x\le-5\) ta có

\(pt\Leftrightarrow-\left(5+x\right)=3x+1\Leftrightarrow-5-x=3x+1\Leftrightarrow-4x=6\Leftrightarrow x=-\frac{3}{2}\) (loại)

Vậy tập nghiệm của phương trình này là : S = 2

(Làm ngu đó vì chưa chắc dạng)

18 tháng 11 2019

\(|5+x|=3x+1\)

\(\Leftrightarrow\orbr{\begin{cases}5+x=3x+1\\5+x=-3x-1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-3x=1-5\\x+3x=-1-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-2x=-4\\4x=-6\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)

Vậy ...

11 tháng 9 2021

\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

a. $f'(x)\leq 0$

$\Leftrightarrow 3x^2-6x\leq 0$

$\Leftrightarrow x(x-2)\leq 0$

$\Leftrightarrow 0\leq x\leq 2$

b.

$f'(x)=x^2-3x+2=0$

$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$

$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$

$\Leftrightarrow x-2=0$

$\Leftrightarrow x=2$

c.

$g(x)=f(1-2x)+x^2-x+2022$

$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$

$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$

$g'(x)\geq 0$

$\Leftrightarrow -24x^2+2x+5\geq 0$

$\Leftrightarrow (5-12x)(2x-1)\geq 0$

$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$

4: =>2x-3>5 hoặc 2x-3<-5

=>x>4 hoặc x<-1

5: =>-4<=2x-1<=4

=>-3/2<=x<=5/2

1: \(\Leftrightarrow\left[{}\begin{matrix}2x-3>5\\2x-3< -5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>5\\x< -1\end{matrix}\right.\)

2: \(\Leftrightarrow-4< =2x-1< =4\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1>=-4\\2x-1< =4\end{matrix}\right.\Leftrightarrow\dfrac{-3}{2}< =x< =\dfrac{5}{2}\)