Chứng minh rằng:
(a+b+c)-(a-b+c)-(a+b-c)+(a-b-c)=0 với a;b;c là 3 số nguyên bất kỳ
Mk cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{a+b+c}{a+b-c}=\dfrac{a-b+c}{a-b-c}\)
\(\Leftrightarrow a^2-\left(b+c\right)^2=a^2-\left(b-c\right)^2\)
\(\Leftrightarrow\left(b+c\right)^2-\left(b-c\right)^2=0\)
\(\Leftrightarrow-4bc=0\)
hay c=0
\(4,VT=-a+b+c-a+b-c+a-b-c=-a+b-c=-\left(a-b+c\right)=VP\\ 5,M=-a+b-b-c+a+c-a=-a\\ M>0\Rightarrow-a>0\Rightarrow a< 0\)
Ta có: \(a+b+c=0\)
=> \(a+b=-c;a+c=-b;b+c=-a\)
Do đó:
\(M=a\left(a+b\right)\left(a+c\right)=a\left(-c\right)\left(-b\right)=abc\)
\(N=b\left(b+c\right)\left(b+a\right)=b\left(-a\right)\left(-c\right)=abc\)
\(P=c\left(c+a\right)\left(c+b\right)=c\left(-b\right)\left(-a\right)=abc\)
=> M=N=P ( = abc)
Ta có : a + b + c = 0
=> a + b = -c ; a + c = -b ; b + c = -a
Thế vào M, N, P :
=> M = a.(-c).(-b) = -abc
N = b.(-a).(-c) = -abc
P = c.(-b).(-a) = -abc
Vậy M = N = P.
\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)
<=>\(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)
<=> \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)
<=> \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)
<=> \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)
<=> \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}\left(đpcm\right)}}\)
Câu hỏi của nguyen thanh chuc - Toán lớp 7 - Học toán với OnlineMath
\(\left(a+b+c\right)-\left(a-b+c\right)-\left(a+b-c\right)+\left(a-b-c\right)\)
\(=a+b+c-a+b-c-a-b+c+a-b-c\)
\(=\left(a-a-a+a\right)+\left(b+b-b-b\right)+\left(c-c+c-c\right)=0\)