Cho tam giác ABC có \(\widehat{A}\)>\(\widehat{B}\), các tia phân giác trong và phân giác ngoài của \(\widehat{C}\)cắt đường thẳng AB lần lượt ở D và ở E. Tính \(\widehat{CED}\)theo \(\widehat{BAC}\)và \(\widehat{ABC}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhanh lên mình cần gấp lắm
giúp mình với huhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhuhu
Bạn tham khảo ở đây:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Link nek:
Câu hỏi của Nguyễn Khánh Ngân - Toán lớp 7 - Học toán với OnlineMath
Bn tham khảo ở đây nha
~ Rất vui vì giúp đc bn ~
Ta có \(\widehat{A}+\widehat{ABC}+\widehat{C}=180^0\Rightarrow180^0-3\widehat{C}+\widehat{C}=180^0-70^0=110^0\)
\(\Rightarrow2\widehat{C}=70^0\Rightarrow\widehat{C}=35^0\Rightarrow\widehat{A}=180^0-3\cdot35^0=75^0\)
Ta có BE là p/g nên \(\widehat{B_1}=\widehat{B_2}=\dfrac{1}{2}\widehat{ABC}=35^0\)
Mà \(ED//BC\) nên \(\widehat{B_2}=\widehat{E_2}=35^0\left(so.le.trong\right)\left(1\right)\)
Ta có \(ED//BC\Rightarrow\widehat{E_1}=\widehat{C}=35^0\left(đồng.vị\right)\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow\widehat{E_1}=\widehat{E_2}\left(=35^0\right)\)
Vậy ...