Xác định bậc, hệ số tự do, hệ số cao nhất, của đa thức
P(x)=
Đáp án: Bậc của đa thức là: Trả lời
Hệ số tự do của đa thức là: Trả lời
Hệ số cao nhất của đa thức là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^5+3x^4-2x^3+7\)
bậc là 5
Hệ số cao nhất là 3
Hệ số tự do là 7
Em muốn hỏi bài nào vậy? Quá nhiều bài thầy cô và các bạn không thể trả lời được hết em ạ
Lời giải:
Bậc của đa thức là bậc của của hạng tử có số mũ lớn nhất trong dạng thu gọn của đa thức đó. Ở đây ta thấy đa thức đã thu gọn rồi và có số mũ $2$ trong $x^2$ là cao nhất nên bậc của đa thức là $2$
Hệ số cao nhất gắn liền với biến có số mũ cao nhất. Ở đây hệ số cao nhất là 5
Hệ số tự do là hệ số không gắn với biến (biến mũ 0) và là $4$
Bậc của đa thức là 2
Hệ số cao nhất là 5
Hệ số tự do là 4
Nhớ tick cho mình nha!
Gọi A là đa thức cần tìm
Đa thức bậc năm một biến có hai hạng tử mà hệ số cao nhất là 2 nên Đa thức chắc chắn sẽ có dạng là \(A=2x^5+B\)
Hệ số tự do là 64 mà đa thức A chỉ có hai hạng tử nên \(A=2x^5+64\)
Đặt A=0
=>\(2x^5+64=0\)
=>\(x^5+32=0\)
=>\(x^5=-32\)
=>x=-2
a: Bậc là 2
Hệ số cao nhất là -7
Hệ số tự do là 1
b: Thay x=2 vào A=0, ta được:
\(a\cdot2^2-3\cdot2-18=0\)
\(\Leftrightarrow4a=24\)
hay a=6
c: Ta có: C+B=A
nên C=A-B
\(=6x^2-3x-18-1-4x+7x^2\)
\(=13x^2-7x-19\)
P(x)=ax^3+bx+c
Hệ số cao nhất là 4 nên a=4
=>P(x)=4x^3+bx+c
Hệ số tự do là 0 nên P(x)=4x^3+bx
P(1/2)=0
=>4*1/8+b*1/2=0
=>b=-1
=>P(x)=4x^3-x
a) Đa thức bậc nhất có hệ số của biến bằng – 2 và hệ số tự do bằng 6 tức \(a = - 2;b = 6\)
\( - 2x + 6\).
b) Đa thức bậc hai có hệ số tự do bằng 4: \({x^2} + x + 4\).
c) Đa thức bậc bốn có hệ số của lũy thừa bậc 3 của biến bằng 0: \({x^4} + 0.{x^3} + {x^2} + 1 = {x^4} + {x^2} + 1\).
d) Đa thức bậc sáu trong đó tất cả hệ số của lũy thừa bậc lẻ của biến đều bằng 0: \({x^6} + 0.{x^5} + {x^4} + 0.{x^3} + {x^2} + 0.x = {x^6} + {x^4} + {x^2}\).