K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2019

\(\left(\sqrt{x+1}+1\right)\left(5-x\right)=2x\)

\(\Leftrightarrow\left(\sqrt{x+1}-2\right)\left(5-x\right)+3\left(5-x\right)-2x=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-2\right)\left(5-x\right)+15-5x=0\)

\(\Leftrightarrow\frac{x+1-4}{\sqrt{x+1}+2}\left(5-x\right)-5\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[\frac{5-x}{\sqrt{x+1}+2}-5\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\5-x=5\sqrt{x+1}+10\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x+5+5\sqrt{x+1}=0\end{cases}}\)

Vì \(x\ge-1\Rightarrow x+5+5\sqrt{x+1}>0\)

Vậy x = 3

20 tháng 11 2019

Mình ko hỉu b ơi

24 tháng 7 2023

\(\sqrt{x+1}=3x+7\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow x+1=\left(3x+7\right)^2\)

\(\Leftrightarrow x+1=9x^2+42x+49\)

\(\Leftrightarrow x+1-9x^2-42x-49=0\)

\(\Leftrightarrow-9x^2-41x-48=0\)

Ta có: \(\Delta=\left(-41\right)^2-4\cdot-9\cdot-48=-48< 0\)

Vậy Pt vô nghiệm

24 tháng 7 2023

\(\sqrt[]{x+1}=3x-7\Leftrightarrow\left\{{}\begin{matrix}3x-7\ge0\\x+1=\left(3x-7\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\x+1=9x^2-42x+49\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{7}{3}\\9x^2-43x+48=0\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow\Delta=1849-1728=121\Rightarrow\sqrt[]{\Delta}=11\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{43+11}{2.9}=3\\x_2=\dfrac{43-11}{2.9}=\dfrac{32}{18}=\dfrac{16}{9}\end{matrix}\right.\)

so với điều kiện \(x\ge\dfrac{7}{3}\)

\(\Rightarrow x=3\)

28 tháng 6 2017

đăng ít 1 thôi

10 tháng 9 2020

sao nhiều thế

2: =>2x^2-8x+4=x^2-4x+4 và x>=2

=>x^2-4x=0 và x>=2

=>x=4

3: \(\sqrt{x^2+x-12}=8-x\)

=>x<=8 và x^2+x-12=x^2-16x+64

=>x<=8 và x-12=-16x+64

=>17x=76 và x<=8

=>x=76/17

4: \(\sqrt{x^2-3x-2}=\sqrt{x-3}\)

=>x^2-3x-2=x-3 và x>=3

=>x^2-4x+1=0 và x>=3

=>\(x=2+\sqrt{3}\)

6:

=>\(\sqrt{\left(\sqrt{x-1}+1\right)^2}-\sqrt{\left(\sqrt{x-1}-1\right)^2}=-2\)

=>\(\sqrt{x-1}+1-\left|\sqrt{x-1}-1\right|=-2\)

=>\(\left|\sqrt{x-1}-1\right|=\sqrt{x-1}+1+2=\sqrt{x-1}+3\)

=>1-căn x-1=căn x-1+3 hoặc căn x-1-1=căn x-1+3(loại)

=>-2*căn x-1=2

=>căn x-1=-1(loại)

=>PTVN

29 tháng 7 2023

1) ĐK: \(x\ge\dfrac{5}{2}\)

pt <=> \(x-4=\sqrt{2x-5}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-4\right)^2=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-8x+16=2x-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-10x+21=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left(x-3\right)\left(x-7\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\\left[{}\begin{matrix}x=3\left(l\right)\\x=7\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=7

2) ĐK: \(2x^2-8x+4\ge0\)

pt <=> \(\left\{{}\begin{matrix}x\ge2\\2x^2-8x+4=x^2-4x+4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x^2-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\left(x-4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\\left[{}\begin{matrix}x=0\left(l\right)\\x=4\left(n\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy, pt có nghiệm duy nhất là x=4

3) ĐK: \(x\ge3\)

pt <=> \(\left\{{}\begin{matrix}x\le8\\x^2+x-12=x^2-16x+64\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\le8\\17x=76\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=\dfrac{76}{17}\left(n\right)\end{matrix}\right.\) 

Vậy, pt có nghiệm duy nhất là \(x=\dfrac{76}{17}\)\(\)