tìm điền kiện của 1 stn sao cho n.4^n + 3^n chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(4\left(n-1\right)-3⋮\left(n-1\right)\)
\(\Rightarrow\left(n-1\right)\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;2;4\right\}\)
b) \(-5\left(4-n\right)+12⋮\left(4-n\right)\)
\(\Rightarrow\left(4-n\right)\inƯ\left(12\right)=\left\{-12;-6;-4;-3;-2;-1;1;2;3;4;6;12\right\}\)
Do \(n\in N\Rightarrow n\in\left\{16;10;8;7;6;5;3;2;1;0\right\}\)
c) \(-2\left(n-2\right)+6⋮\left(n-2\right)\)
\(\Rightarrow\left(n-2\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
d) \(n\left(n+3\right)+6⋮\left(n+3\right)\)
\(\Rightarrow\left(n+3\right)\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
Do \(n\in N\Rightarrow n\in\left\{0;3\right\}\)
a) Vì 5n + 7 chia hết cho n
\(\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\Rightarrow n\in\left\{\pm1;\pm7\right\}\)
Vậy \(n\in\left\{\pm1;\pm7\right\}\)
b) Vì n + 9 chia hết cho n +4
\(\Rightarrow\left(n+4\right)+5⋮n+4\)
\(\Rightarrow5⋮n+4\)
\(\Rightarrow n+4\inƯ\left(5\right)\)
\(\Rightarrow n+4\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{-3;-5;-1;-9\right\}\) \(\inℕ\)
Vậy \(n\in\left\{-3;-5;-1;-9\right\}\)
Tìm stn n sao cho :
a, (a^4-2n^3+2n^2-2n+1) chi hết cho (n^4-1)
b, (n^3-n^2+2n+7) chia hết cho (n^2+1)
Cho A =35+77+6+n ,với n thuộc stn Tìm điều kiện của N để a)A chia hết cho 7 b)A không chia hết cho 7
Vì 35 chia hết cho 7
77 chia hết cho 7
6 không chia hết cho 7
Để A không chia hết cho 7 thì n phải chia hết cho 7
=> n thuộc { 7 ; 14 ; 28 ; 42 ; ... }
1. a) \(\left(n+15\right)⋮\left(n+2\right)\)
\(\Rightarrow\left[n+15-\left(n+2\right)\right]⋮\left(n+2\right)\)
\(\Rightarrow\left[n+15-n-2\right]⋮\left(n+2\right)\)
\(\Rightarrow13⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ_{\left(13\right)}=\left\{\pm1;\pm13\right\}\)
\(\Rightarrow n\in\left\{...\right\}\)
b) \(\left(3n+17\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(3n+17\right)⋮3\left(n+1\right)\)
\(\Rightarrow\left(3n+17\right)⋮\left(3n+3\right)\)
\(\Rightarrow\left[\left(3n+17\right)-\left(3n+3\right)\right]⋮\left(n+1\right)\)
\(\Rightarrow\left[3n+17-3n-3\right]⋮\left(n+1\right)\)
\(\Rightarrow14⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ_{\left(14\right)}=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow n\in\left\{...\right\}\)
a) Để n + 1 là ước của 2n + 7 thì :
2n + 7 ⋮ n + 1
2n + 2 + 5 ⋮ n + 1
2( n + 1 ) + 5 ⋮ n + 1
Vì 2( n +1 ) ⋮ n + 1
=> 5 ⋮ n + 1
=> n + 1 thuộc Ư(5) = { 1; 5; -1; -5 }
=> n thuộc { 0; 4; -2; -6 }
Vậy........
\(\text{n + 1 là ước của 2n + 7 nên }\left(2n+7\right)⋮\left(n+1\right)\)
\(\Rightarrow\left(2n+2+5\right)⋮\left(n+1\right)\)
\(\Rightarrow5⋮\left(n+1\right)\left[\text{vì }\left(2n+2\right)⋮\left(n+1\right)\right]\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\text{Trường hợp : }n+1=1\)
\(\Rightarrow n=1-1\)
\(\Rightarrow n=0\)
\(\text{Trường hợp : }n+1=5\)
\(\Rightarrow n=5-1\)
\(\Rightarrow n=4\)
\(\text{Vậy }n\in\left\{0;4\right\}\)