Biết sin x + cos x = m. Tìm \(\left|\sin^4x-\cos^4x\right|\) . Chứng minh rằng \(\left|m\right|\le\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(sinx+cosx\right)^2=m^2\)
=>\(m^2=sin^2x+cos^2x+2\cdot sinx\cdot cosx\)
=>\(2\cdot sinx\cdot cosx=m^2-1\)
\(\left(sinx-cosx\right)^2=sin^2x+cos^2x-2\cdot sinx\cdot cosx\)
\(=1-\left(m^2-1\right)=2-m^2\)
\(\left|sin^4x-cos^4x\right|=\left|\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\right|\)
\(=\left|sin^2x-cos^2x\right|\)
\(=\left|\left(sinx+cosx\right)\left(sinx-cosx\right)\right|\)
\(=\left|m\left(2-m^2\right)\right|=\left|2m-m^3\right|\)
b: \(m=sinx+cosx\)
\(=\sqrt{2}\cdot\left(sinx\cdot\dfrac{\sqrt{2}}{2}+cosx\cdot\dfrac{\sqrt{2}}{2}\right)\)
\(=\sqrt{2}\cdot sin\left(x+\dfrac{\Omega}{4}\right)\)
=>\(\left|m\right|=\sqrt{2}\cdot\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|\)
\(0< =\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|< =1\)
=>\(0< =\sqrt{2}\cdot\left|sin\left(x+\dfrac{\Omega}{4}\right)\right|< =\sqrt{2}\)
=>\(\left|m\right|< =\sqrt{2}\)
a) \(\left(sinx+cosx\right)^2=sin^2x+2sinxcosx+cos^2x\)\(=1+2sinxcosx\).
b) \(\left(sinx-cosx\right)^2=sin^2x-2sinxcosx+cos^2x\)\(=1-2sinxcosx\).
c) \(sin^4x+cos^4x=\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\)
\(=1-2sin^2xcos^2x\).
1,\(A=3\left(sin^4x+cos^4x\right)-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)-2\left(sin^4x-sin^2x.cos^4x+cos^4x\right)\)
\(=sin^4x+2sin^2x.cos^2x+cos^4x=\left(sin^2x+cos^2x\right)^2=1\)
Vậy...
2,\(B=cos^6x+2sin^4x\left(1-sin^2x\right)+3\left(1-cos^2x\right)cos^4x+sin^4x\)
\(=-2cos^6x+3sin^4x-2sin^6x+3cos^4x\)
\(=-2\left(sin^2x+cos^2x\right)\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)
\(=-2\left(sin^4x-sin^2x.cos^2x+cos^4x\right)+3\left(cos^4x+sin^4x\right)\)\(=cos^4x+sin^4x+2sin^2x.cos^2x=1\)
Vậy...
3,\(C=\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}\right)\right]+\dfrac{1}{2}\left[cos\left(-\dfrac{7\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)
\(=cos\left(-\dfrac{7\pi}{12}\right)+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x+\dfrac{11\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)+cos\left(2x-\dfrac{\pi}{12}+\pi\right)\right]\)
\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}+\dfrac{1}{2}\left[cos\left(2x-\dfrac{\pi}{12}\right)-cos\left(2x-\dfrac{\pi}{12}\right)\right]\)\(=\dfrac{-\sqrt{6}+\sqrt{2}}{4}\)
Vậy...
4, \(D=cos^2x+\left(-\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx\right)^2+\left(-\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right)^2\)
\(=cos^2x+\dfrac{1}{4}cos^2x+\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x+\dfrac{1}{4}cos^2x-\dfrac{\sqrt{3}}{4}cosx.sinx+\dfrac{3}{4}sin^2x\)
\(=\dfrac{3}{2}\left(cos^2x+sin^2x\right)=\dfrac{3}{2}\)
Vậy...
5, Xem lại đề
6,\(F=-cosx+cosx-tan\left(\dfrac{\pi}{2}+x\right).cot\left(\pi+\dfrac{\pi}{2}-x\right)\)
\(=tan\left(\pi-\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=tan\left(\dfrac{\pi}{2}-x\right).cot\left(\dfrac{\pi}{2}-x\right)\)\(=cotx.tanx=1\)
Vậy...
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
\(A=\sqrt{\left(1-cos^2x\right)^2+4cos^2x}+\sqrt{\left(1-sin^2x\right)^2+4sin^2x}\)
\(=\sqrt{cos^4x+2cos^2x+1}+\sqrt{sin^4x+2sin^2x+1}\)
\(=\sqrt{\left(cos^2x+1\right)^2}+\sqrt{\left(sin^2x+1\right)^2}\)
\(=sin^2x+cos^2x+2=3\)
b/
\(3\left(sin^8x-cos^8x\right)=3\left(sin^4x+cos^4x\right)\left(sin^4x-cos^4x\right)\)
\(=3\left(sin^4x+cos^4x\right)\left(sin^2x-cos^2x\right)\)
\(=3sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x-3cos^6x\)
\(\Rightarrow B=-5sin^6x-3sin^4x.cos^2x+3sin^2x.cos^4x+cos^6x+6sin^4x\)
\(=-5sin^6x-3sin^4x\left(1-sin^2x\right)+3cos^4x\left(1-cos^2x\right)+cos^6x+6sin^4x\)
\(=-2sin^6x-2cos^6x+3sin^4x+3cos^4x\)
\(=-2\left(1-3sin^2x.cos^2x\right)+3\left(1-2sin^2x.cos^2x\right)\)
\(=-2+3=1\)
a+b+c : dựa vào cái hệ thức \(\sin^2\alpha+\cos^2\alpha=1\)
a) Ta có : \(\left(\sin x+\cos x\right)^2\)
\(=\sin^2x+2.\sin x.\cos x+\cos^2x\)
\(=1+2.\sin x.\cos x\left(đpcm\right)\)
b) Ta có : \(\left(\sin x+\cos x\right)^2+\left(\sin x-\cos x\right)^2\)
\(=\sin^2x+2.\sin x.\cos x+\cos^2x+\sin^2x-2.\sin x.\cos x+\cos^2x\)
\(=\sin^2x+\cos^2x+\sin^2x+\cos^2x\)
\(=2\left(\sin^2x+\cos^2x\right)\)
\(=2\times1=2\left(đpcm\right)\)
c) Ta có : \(\sin^4x+\cos^4x\)
\(=\left(\sin^2x\right)^2+\left(\cos^2x\right)^2\)
\(=\left(\sin^2x+\cos^2x\right)^2-2.\sin^2x.\cos^2x\)
\(=1-2.\sin^2x.\cos^2x\left(đpcm\right)\)
Vậy ...
a) Ta có (\sin x+\cos x)^{2}=\sin ^{2} x+2 \sin x \cos x+\cos ^{2} x=1+2 \sin x \cos x(sinx+cosx)2=sin2x+2sinxcosx+cos2x=1+2sinxcosx (*)
Mặt khác \sin x+\cos x=msinx+cosx=m nên m^{2}=1+2 \sin \alpha \cos \alpham2=1+2sinαcosα hay \sin \alpha \cos \alpha=\dfrac{m^{2}-1}{2}sinαcosα=2m2−1
Đặt A=\left|\sin ^{4} x-\cos ^{4} x\right|A=∣∣sin4x−cos4x∣∣. Ta có
A=\left|\left(\sin ^{2} x+\cos ^{2} x\right)\left(\sin ^{2} x-\cos ^{2} x\right)\right|=|(\sin x+\cos x)(\sin x-\cos x)|A=∣∣(sin2x+cos2x)(sin2x−cos2x)∣∣=∣(sinx+cosx)(sinx−cosx)∣
\Rightarrow A^{2}=(\sin x+\cos x)^{2}(\sin x-\cos x)^{2}=(1+2 \sin x \cos x)(1-2 \sin x \cos x)⇒A2=(sinx+cosx)2(sinx−cosx)2=(1+2sinxcosx)(1−2sinxcosx)
\Rightarrow A^{2}=\left(1+\dfrac{m^{2}-1}{2}\right)\left(1-\dfrac{m^{2}-1}{2}\right)=\dfrac{3+2 m^{2}-m^{4}}{4}⇒A2=(1+2m2−1)(1−2m2−1)=43+2m2−m4
Vậy A=\dfrac{\sqrt{3+2 m^{2}-m^{4}}}{2}A=23+2m2−m4
b) Ta có 2 \sin x \cos x \leq \sin ^{2} x+\cos ^{2} x=12sinxcosx≤sin2x+cos2x=1 kết hợp với (*)(∗) suy ra
(\sin x+\cos x)^{2} \leq 2 \Rightarrow|\sin x+\cos x| \leq \sqrt{2}(sinx+cosx)2≤2⇒∣sinx+cosx∣≤2
Vậy |m| \leq \sqrt{2}∣m∣≤2.
Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý
Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)
\(A=\left|\sin^4x-\cos^4x\right|=\left|\left(\sin^2x\right)^2-\left(\cos^2x\right)^2\right|\)
\(A=\left|\left(1-\cos^2x\right)^2-\left(\cos^2x\right)^2\right|=\left|1-2\cos^2x+\cos^4x-\cos^4x\right|\)
\(=\left|1-2\cos^2x\right|=\left|\sin^2x-\cos^2x\right|=\left|\left(\sin x-\cos x\right)\left(\sin x+\cos x\right)\right|\)
\(\sin x+\cos x=m\Rightarrow\cos x=m-\sin x\Rightarrow\sin x-\cos x=\sin x-m+\sin x=2\sin x-m\)
Có \(\sin x+\cos x=m\Rightarrow\sin^2x+\cos^2x+2\sin x.\cos x=m^2\)
\(\Leftrightarrow2\sin x.\cos x=m^2-1\)
\(\left(\sin x-\cos x\right)^2=\sin^2x+\cos^2x-2\sin x.\cos x=1-2.\left(m^2-1\right)=1-2m^2+2=3-2m^2\)
\(\Rightarrow\sin x-\cos x=\sqrt{\left(\sin x-\cos x\right)^2}=\sqrt{3-2m^2}\)
\(A=\left|m\sqrt{3-2m^2}\right|=\left|m\right|.\left|\sqrt{3-2m^2}\right|\)
P/s: lm đc mỗi đến đây thui à, cái CM kia chịu nhoa :)
\(\left(sinx+cosx\right)^2=m^2\Rightarrow1+2sinx.cosx=m^2\)\(\Rightarrow2sinx.cosx=m^2-1\)
\(\Rightarrow\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4sinx.cosx=m^2-2\left(m^2-1\right)=2-m^2\)
Mà \(\left(sinx-cosx\right)^2\ge0\) \(\forall x\Rightarrow2-m^2\ge0\Rightarrow m^2\le2\Rightarrow\left|m\right|\le\sqrt{2}\)
Ta lại có \(\left(sinx-cosx\right)^2=2-m^2\Rightarrow\left|sinx-cosx\right|=\sqrt{2-m^2}\)
\(A=\left|sin^4x-cos^4x\right|=\left|\left(sin^2x+cos^2x\right)\left(sin^2x-cos^2x\right)\right|\)
\(=\left|\left(sinx-cosx\right)\left(sinx+cosx\right)\right|\)
\(=\left|m\sqrt{2-m^2}\right|=\left|m\right|\sqrt{2-m^2}\)