K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. 

PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$

$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)

$\Leftrightarrow (t-4)(t+6)=0$

$\Rightarrow t-4=0$ hoặc $t+6=0$

Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$

$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$

Nếu $t+6=0$

$\Leftrightarrow x^2+5x+6=0$

$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$

2.

PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$

$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)

$\Leftrightarrow (t-1)(t+3)=0$

$\Rightarrow t-1=0$ hoặc $t+3=0$

Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$

$\Rightarrow x=0$ hoặc $x=4$

Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$

$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$

19 tháng 3 2019
https://i.imgur.com/M7sPNgY.jpg
19 tháng 3 2019
https://i.imgur.com/KdjbxBN.jpg
23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

14 tháng 3 2018

Đk : x >= -70

Đặt : \(\sqrt{x+70}=a\);  \(\sqrt{2x^2+4x+16}=b\)

=> 6x^2+10x-92 = 3b^2 - 2a^2

pt trở thành :

3b^2 - 2a^2 + ab = 0

<=> (3b^2+3ab)-(2ab+2a^2) = 0

<=> (a+b).(3b-2a) = 0

<=> a+b=0 hoặc 3b-2a = 0

<=> a=-b hoặc 2a=3b

Đến đó bạn tự thay vào mà làm nha

Tk mk nha

18 tháng 2 2016

đặt t= x+10x+20 ta có phương trình <=> (t-4)(t+4)+16=0

                                                        <=> t2-16+16=0 

                                                        <=> t=0 
                                                        <=>x+10x+20=0

giải nghiệm ra ta được x=-5+ căn 5 và x= -5- căn 5 

mấy bạn chi mk ý kiến nha .thanks

a) Sửa đề: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

ĐKXĐ: \(x\notin\left\{3;\dfrac{1}{5}\right\}\)

Ta có: \(\dfrac{3}{5x-1}+\dfrac{2}{3-x}=\dfrac{4}{\left(1-5x\right)\left(x-3\right)}\)

\(\Leftrightarrow\dfrac{3\left(3-x\right)}{\left(5x-1\right)\left(3-x\right)}+\dfrac{2\left(5x-1\right)}{\left(3-x\right)\left(5x-1\right)}=\dfrac{4}{\left(5x-1\right)\left(3-x\right)}\)

Suy ra: \(9-3x+10x-2=4\)

\(\Leftrightarrow7x+7=4\)

\(\Leftrightarrow7x=-3\)

hay \(x=-\dfrac{3}{7}\)

Vậy: \(S=\left\{-\dfrac{3}{7}\right\}\)