Giúp mình câu 1 gấp ạ 🙏🙏
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Trong tam giác A'BC ta có: I là trung điểm BA', M là trung điểm BC
\(\Rightarrow IM\) là đường trung bình tam giác A'BC
\(\Rightarrow IM||A'C\)
\(\Rightarrow IM||\left(ACC'A'\right)\)
Do \(A\in\left(AB'M\right)\cap\left(ACC'A'\right)\) và \(\left\{{}\begin{matrix}IM\in\left(AB'M\right)\\A'C\in\left(ACC'A'\right)\\IM||A'C\end{matrix}\right.\)
\(\Rightarrow\) Giao tuyến của (AB'M) và (ACC'A') là đường thẳng qua A và song song A'C
Qua A kẻ đường thẳng d song song A'C
\(\Rightarrow d=\left(AB'M\right)\cap\left(ACC'A'\right)\)
b.
I là trung điểm AB', E là trung điểm AM
\(\Rightarrow IE\) là đường trung bình tam giác AB'M \(\Rightarrow IE||B'M\) (1)
Tương tự ta có IN là đường trung bình tam giác AA'B' \(\Rightarrow IN||A'B'\) (2)
(1);(2) \(\Rightarrow\left(EIN\right)||\left(A'B'M\right)\)
c.
Trong mp (BCC'B'), qua K kẻ đường thẳng song song B'M lần lượt cắt BC và B'C' tại D và F
\(DF||B'M\Rightarrow DF||IE\Rightarrow DF\subset\left(EIK\right)\)
Trong mp (ABC), nối DE kéo dài cắt AB tại G
\(\Rightarrow G\in\left(EIK\right)\)
Trong mp (A'B'C'), qua F kẻ đường thẳng song song A'C' cắt A'B' tại H
Do IK là đường trung bình tam giác A'BC' \(\Rightarrow IK||A'B'\)
\(\Rightarrow FH||IK\Rightarrow H\in\left(EIK\right)\)
\(\Rightarrow\) Tứ giác DFHG là thiết diện (EIK) và lăng trụ
Gọi J là giao điểm BK và B'M \(\Rightarrow J\) là trọng tâm tam giác B'BC
\(\Rightarrow\dfrac{BJ}{BK}=\dfrac{2}{3}\)
Áp dụng talet: \(\dfrac{BM}{BD}=\dfrac{BJ}{BK}=\dfrac{2}{3}\Rightarrow BD=\dfrac{3}{2}BM=\dfrac{3}{2}.\dfrac{1}{2}BC=\dfrac{3}{4}BC\)
\(\Rightarrow MD=\dfrac{1}{4}BC=\dfrac{1}{2}CM\Rightarrow D\) là trung điểm CM
\(\Rightarrow DE\) là đường trung bình tam giác ACM
\(\Rightarrow DE||AC\Rightarrow DE||FH\)
\(\Rightarrow\) Thiết diện là hình thang
3:
a: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
b: BC vuông góc AB
BC vuông góc SA
=>BC vuông góc (SAB)
=>(SBC) vuông góc (SAB)
Không gian mẫu: \(C_{100}^5\)
Trong 100 số từ 1 tới 100 có 50 số chẵn và 50 số lẻ
Để tổng 5 số là 1 số chẵn ta có các trường hợp: (5 số đều chẵn), (1 số chẵn 4 số lẻ), (3 số chẵn 2 số lẻ)
\(\Rightarrow C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2\) trường hợp thỏa mãn
Xác suất: \(P=\dfrac{C_{50}^5+C_{50}^1C_{50}^4+C_{50}^3C_{50}^2}{C_{100}^5}=...\)
Bán kính hình tròn:
\(18,84:3,14:2=3\left(cm\right)\)
Diện tích hình tròn:
\(3\times3\times3,14=28,26\left(cm^2\right)\)
Đường kính hình tròn:
\(3\times2=6\left(cm\right)\)
Diện tích hình thoi:
\(\dfrac{6\times6}{2}=18\left(cm^2\right)\)
Diện tích phần gạch chéo:
\(28,26-18=10,26\left(cm^2\right)\)
a: Ta có: \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
\(\Leftrightarrow\left|x-2\right|=\left|2x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-2\\2x-3=2-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{5}{3}\end{matrix}\right.\)
c: Ta có: \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
\(\Leftrightarrow\left|2x-1\right|=\left|x-3\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-3\\2x-1=3-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{4}{3}\end{matrix}\right.\)
4b.
\(\dfrac{\pi}{2}< a< \pi\Rightarrow cosa< 0\Rightarrow cosa=-\sqrt{1-sin^2a}=-\dfrac{4}{5}\)
\(\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{3}{4}\)
\(tan\left(a+\dfrac{\pi}{3}\right)=\dfrac{tana+tan\left(\dfrac{\pi}{3}\right)}{1-tana.tan\left(\dfrac{\pi}{3}\right)}=\dfrac{-\dfrac{3}{4}+\sqrt{3}}{1-\left(-\dfrac{3}{4}\right).\sqrt{3}}=...\)
c.
\(\dfrac{3\pi}{2}< a< 2\pi\Rightarrow cosa>0\Rightarrow cosa=\sqrt{1-sin^2a}=\dfrac{5}{13}\)
\(cos\left(\dfrac{\pi}{3}-a\right)=cos\left(\dfrac{\pi}{3}\right).cosa+sin\left(\dfrac{\pi}{3}\right).sina=\dfrac{1}{2}.\dfrac{5}{13}+\left(-\dfrac{12}{13}\right).\dfrac{\sqrt{3}}{2}=...\)
5:
a: sin x=2*cosx
\(A=\dfrac{6cosx+2cosx-4\cdot8\cdot cos^3x}{cos^3x-2cosx}\)
\(=\dfrac{8-32cos^2x}{cos^2x-2}\)
b: VT=sin^4(pi/2-x)+cos^4(x+pi/2)+6*1/2*sin^22x+1/2*cos4x
=cos^4x+sin^4x+3*sin^2(2x)+1/2*(1-2*sin^2(2x))
=1-2*sin^2x*cos^2x+3*sin^2(2x)+1/2-sin^2(2x)
==3/2=VP
Bạn cho mình hỏi là đề mình cho 2√2 mà sao bạn làm √2