K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2019

\(\Leftrightarrow\frac{3}{2}\left(a+c\right)^2+\frac{\left(a-c-2b\right)^2}{2}\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b = -c

Vậy..

NV
16 tháng 11 2019

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab-2bc-2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2+2bc+c^2+c^2+2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b=-c\)

27 tháng 8 2021

Tùy bạn làm được câu nao thì làm nhưng mà  đừng làm tắt.

NV
27 tháng 8 2021

a. Đề bài sai (thực chất là nó đúng 1 cách hiển nhiên nhưng "dạng" thế này nó sai sai vì ko ai cho kiểu này cả)

Ta có: \(abc=ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow abc\ge27\)

\(\Rightarrow a^2+b^2+c^2+5abc\ge a^2+b^2+c^2+5.27>>>>>8\)

b. 

\(4=ab+bc+ca+abc=ab+bc+ca+\sqrt{ab.bc.ca}\le ab+bc+ca+\sqrt{\left(\dfrac{ab+bc+ca}{3}\right)^3}\)

\(\sqrt{\dfrac{ab+bc+ca}{3}}=t\Rightarrow t^3+3t^2-4\ge0\Rightarrow\left(t-1\right)\left(t+2\right)^2\ge0\)

\(\Rightarrow t\ge1\Rightarrow ab+bc+ca\ge3\Rightarrow a+b+c\ge\sqrt{3\left(ab+bc+ca\right)}\ge3\)

- TH1: nếu \(a+b+c\ge4\)

Ta có: \(ab+bc+ca=4-abc\le4\)

\(\Rightarrow P=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)+5abc\ge4^2-2.4+0=8\)

(Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;0\right)\) và các hoán vị)

- TH2: nếu \(3\le a+b+c< 4\)

Đặt \(a+b+c=p\ge3;ab+bc+ca=q;abc=r\)

\(P=p^2-2q+5r=p^2-2q+5\left(4-q\right)=p^2-7q+20\)

Áp dụng BĐT Schur:

\(4=q+r\ge q+\dfrac{p\left(4q-p^2\right)}{9}\Leftrightarrow q\le\dfrac{p^3+36}{4p+9}\)

\(\Rightarrow P\ge p^2-\dfrac{7\left(p^3+36\right)}{4p+9}+20=\dfrac{3\left(4-p\right)\left(p-3\right)\left(p+4\right)}{4p+9}+8\ge8\)

(Dấu "=" xảy ra khi \(a=b=c=1\))

25 tháng 1 2020

1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)

\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)

25 tháng 1 2020

2.

Vỉ \(ab+bc+ca+abc=4\)thi luon ton tai \(a=\frac{2x}{y+z};b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

\(\Rightarrow VT=2\Sigma_{cyc}\sqrt{\frac{ab}{\left(b+c\right)\left(c+a\right)}}\le2\Sigma_{cyc}\frac{\frac{b}{b+c}+\frac{a}{c+a}}{2}=3\)

9 tháng 6 2017

Ta có :

\(a^2+b^2\ge2ab\)

\(b^2+c^2\ge2bc\)

\(c^2+a^2\ge2ca\)

Cộng vế với vế ta được : 

\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)

Hay \(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu "=" xảy ra khi a=b=c

10 tháng 6 2017

a, \(a^2+b^2\ge2ab\)

    \(b^2+c^2\ge2bc\)

    \(c^2+a^2\ge ca\)

Cộng các vế => đpcm

b, Áp dung bdt a, ta có thể cm đc \(\left(x+y+z\right)^2\ge3xy+3yz+3zx\)

Thay x,y,z lần lượt bởi ab;bc;ca => ĐPCM

27 tháng 12 2015

\(1.\sqrt{a^2+ab+b^2}\le\frac{1+a^2+ab+b^2}{2}\)

\(\Rightarrow VT\ge\frac{1}{\frac{1+a^2+ab+b^2}{2}}+\)\(\frac{1}{\frac{1+b^2+cb+c^2}{2}}+\)\(\frac{1}{\frac{1+c^2+ac+a^2}{2}}\)\(\ge\frac{\left(1+1+1\right)^2}{\frac{1+a^2+ab+b^2}{2}+\frac{1+b^2+bc+c^2}{2}+\frac{1+c^2+ca+a^2}{2}}=\frac{9}{a^2+b^2+c^2+\frac{\left(ab+bc+ca\right)+3}{2}}\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}=VP\)

vì   3 </ 3 ( ab+bc+ca)

NV
18 tháng 6 2020

\(\Leftrightarrow\frac{1}{\left(\frac{b}{a}\right)^2+\frac{b}{a}+1}+\frac{1}{\left(\frac{c}{b}\right)^2+\frac{c}{b}+1}+\frac{1}{\left(\frac{a}{c}\right)^2+\frac{a}{c}+1}\ge1\)

Đặt \(\left(\frac{b}{a};\frac{c}{b};\frac{a}{c}\right)=\left(m;n;p\right)\Rightarrow mnp=1\)

Ta cần chứng minh: \(\frac{1}{m^2+m+1}+\frac{1}{n^2+n+1}+\frac{1}{p^2+p+1}\ge1\) với điều kiện \(mnp=1\)

Đây là BĐT Vasc rất nổi tiếng

Đặt \(\left(m;n;p\right)=\left(\frac{yz}{x^2};\frac{zx}{y^2};\frac{xy}{z^2}\right)\):

\(VT=\frac{x^4}{x^4+x^2yz+y^2z^2}+\frac{y^4}{y^4+xy^2z+z^2x^2}+\frac{z^4}{z^4+xyz^2+x^2y^2}\)

\(VT\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\)

Ta chỉ cần chứng minh: \(\frac{\left(x^2+y^2+z^2\right)^2}{x^4+y^4+z^4+x^2yz+xy^2z+xyz^2+x^2y^2+y^2z^2+z^2x^2}\ge1\)

\(\Leftrightarrow x^2y^2+y^2z^2+z^2x^2\ge x^2yz+xy^2z+xyz^2\)

BĐT này hiển nhiên đúng (theo \(a^2+b^2+c^2\ge ab+bc+ca\))

Dấu "=" xảy ra khi \(a=b=c\)

NV
1 tháng 5 2021

a.

Ta có: \(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\)

Tương tự: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) ; \(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\)

Cộng vế:

\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{a+b+c}{2}\ge a+b+c\)

\(\Leftrightarrow\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{a+b+c}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

NV
1 tháng 5 2021

b.

Ta có:

\(a^2+bc\ge2\sqrt{a^2bc}=2\sqrt{ab.ac}\Rightarrow\dfrac{1}{a^2+bc}\le\dfrac{1}{2\sqrt{ab.ac}}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{ac}\right)\)

Tương tự: \(\dfrac{1}{b^2+ac}\le\dfrac{1}{4}\left(\dfrac{1}{ab}+\dfrac{1}{bc}\right)\) ; \(\dfrac{1}{c^2+ab}\le\dfrac{1}{4}\left(\dfrac{1}{ac}+\dfrac{1}{bc}\right)\)

Cộng vế với vế:

\(\dfrac{1}{a^2+bc}+\dfrac{1}{b^2+ac}+\dfrac{1}{c^2+ab}\le\dfrac{1}{2}\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}\right)=\dfrac{a+b+c}{2abc}\)

Dấu "=" xảy ra khi \(a=b=c\)